
Data Structures and Algorithms
(in JAVA)

Course objectives

❑ Be familiar with different data structures available to
represents data

❑ Be able to trace algorithms and verify correctness.
❑ Be able to develop and implement algorithms using

different data structures
❑ Be able to select appropriate data structures and

algorithms for given problems
❑ Be able to use JAVA language to implement different

algorithms pseudo codes.

Course Outline
❑ Fundamentals of data structures and algorithms
❑ Static and dynamic data structures
❑ Basic searching and sorting algorithms
❑ Recursion
❑ Abstract data types
❑ Stacks and queues
❑ Trees

Readings/references

❑ Text Book:
▪ Data Structures & Algorithms in JAVA (5th Edition), by M. Goodrich & R.
Tamassia, John Wiley & Sons, inc., 2010.

❑ Additional Readings:
▪ Data Structures and Problem Solving with JAVA (3rd Edition), by Mark
Allen Weiss, Addison Wesley, 2006.
▪ Lecture slides and handouts

What is data?
❑ Data

▪ A collection of facts from which conclusion may be
drawn
▪ e.g. Data: Temperature 35°C; Conclusion: It is hot.

❑ Types of data
▪ Textual: For example, your name (Muhammad)
▪ Numeric: For example, your ID (090254)
▪ Audio: For example, your voice
▪ Video: For example, your voice and picture
▪ (...)

What is data structure?
❑ A particular way of storing and organizing data

in a computer so that it can be used efficiently and
effectively.

❑Data Structures are the programmatic way of
storing data so that data can be used efficiently.

❑Data structure is the logical or mathematical model
of a particular organization of data.

❑ A group of data elements grouped together under
one name.
▪ For example, an array of integers

• Data Structure

is a way of collecting and organizing data in such a way that we
can perform operations on these data in an effective way.

• Data Structures

is about rendering data elements in terms of some relationship,
for better organization and storage.

 For example, we have some data which has,
player's name "Virat" and age 26. Here "Virat" is
of String data type and 26 is of integer data type.

• We can organize this data as a record like Player record, which
will have both player's name and age in it.

• Now we can collect and store player's records in a file or
database as a data structure. For example: "Dhoni" 30,
"Gambhir" 31, "Sehwag" 33

There are many, but we named a few. We’ll learn these
data structures in great detail!

1-D Array

Linked List

Tree
Queue Stack

Types of data structures

The Need for Data Structures

❑ Goal: to organize data

❑ Criteria: to facilitate efficient
▪ storage of data
▪ retrieval of data
▪ manipulation of data

❑ Design Issue:
▪ select and design appropriate data types

(This is the main motivation to learn and understand data
structures)

Data Structure Operations
(Demonstrate using class room example!)

❑ Traversing
▪ Accessing each data element exactly once so that

certain items in the data may be processed
❑ Searching
▪ Finding the location of the data element (key) in the

structure
❑ Insertion
▪ Adding a new data element to the structure

Data Structure Operations (cont.)
❑ Deletion
▪ Removing a data element from the structure

❑ Sorting
▪ Arrange the data elements in a logical order

(ascending/descending)
❑ Merging
▪ Combining data elements from two or more data

structures into one

What is algorithm?
❑ A finite set of instructions which accomplish a

particular task
❑ A method or process to solve a problem
❑ Transforms input of a problem to output

Algorithm = Input + Process + Output

Algorithm development is an art – it needs practice,
practice and only practice!

• Algorithm is a step-by-step procedure, which defines a set of
instructions to be executed in a certain order to get the desired
output.

• Algorithms are generally created independent of underlying
languages, i.e. an algorithm can be implemented in more than
one programming language.

• From the data structure point of view, following are some
important categories of algorithms −

• Search − Algorithm to search an item in a data structure.

• Sort − Algorithm to sort items in a certain order.

• Insert − Algorithm to insert item in a data structure.

• Update − Algorithm to update an existing item in a data
structure.

• Delete − Algorithm to delete an existing item from a data
structure.

What is a good algorithm?
❑ It must be correct
❑ It must be finite (in terms of time and size)
❑ It must terminate
❑ It must be unambiguous

▪ Which step is next?
❑ It must be space and time efficient

A program is an instance of an algorithm,
written in some specific programming language

A simple algorithm
❑ Problem: Find maximum of a, b, c
❑ Algorithm

▪ Input = a, b, c
▪ Output = max
▪ Process

o Let max = a
o If b > max then

max = b

o If c > max then
max = c

o Display max

Order is very important!!!

Algorithm development: Basics

❑ Clearly identify:
▪ what output is required?
▪ what is the input?
▪ What steps are required to transform input into
output
o The most crucial bit
o Needs problem solving skills
o A problem can be solved in many different ways
o Which solution, amongst the different possible solutions

is optimal?

How to express an algorithm?
❑ A sequence of steps to solve a problem
❑ We need a way to express this sequence of steps

▪ Natural language (NL) is an obvious choice, but not a
good choice. Why?
o NLs are notoriously ambiguous (unclear)

▪ Programming language (PL) is another choice, but
again not a good choice. Why?
o Algorithm should be PL independent

▪ We need some balance
o We need PL independence
o We need clarity
o Pseudo-code provides the right balance

What is pseudo-code?
❑ Pseudo-code is a short hand way of describing a

computer program
❑ Rather than using the specific syntax of a computer

language, more general wording is used
❑ It is a mixture of NL and PL expressions, in a

systematic way
❑ Using pseudo-code, it is easier for a

non-programmer to understand the general
workings of the program

Pseudo-code: general guidelines

❑ Use PLs construct that are consistent with modern
high level languages, e.g. C++, Java, ...

❑ Use appropriate comments for clarity
❑ Be simple and precise

Components of Pseudo-code
❑ Expressions

▪ Standard mathematical symbols are used
o Left arrow sign (←) as the assignment operator in

assignment statements (equivalent to the = operator in Java)
o Equal sign (=) as the equality relation in Boolean

expressions (equivalent to the "= =" relation in Java)
o For example

Sum ← 0
Sum ← Sum + 5

What is the final value of sum?

Components of Pseudo-code (cont.)
❑ Decision structures (if-then-else logic)
▪ if condition then true-actions [else false-actions]
▪We use indentation to indicate what actions should be

included in the true-actions and false-actions
▪ For example

if marks > 50 then
print “Congratulation, you are passed!”
 else
print “Sorry, you are failed!”
end if

What will be the output if marks are equal to 75?

Components of Pseudo-code (cont.)
❑ Loops (Repetition)

▪ Pre-condition loops
o While loops

• while condition do actions
• We use indentation to indicate what actions should be included in

the loop actions
• For example

while counter < 5 do
print “Welcome to CS204!”
counter ← counter + 1

 end while

What will be the output if counter is initialised to 0, 7?

Components of Pseudo-code (cont.)
❑ Loops (Repetition)

▪ Pre-condition loops
o For loops

• for variable-increment-definition do actions
• For example

for counter ← 0; counter < 5; counter ← counter + 2 do
print “Welcome to CS204!”

 end for

What will be the output?

Components of Pseudo-code (cont.)
❑ Loops (Repetition)

▪ Post-condition loops
o Do loops

• do actions while condition
• For example

do
print “Welcome to CS204!”
counter ← counter + 1

while counter < 5

What will be the output, if counter was initialised to 10?

The body of a post-condition loop must execute at least once

Components of Pseudo-code (cont.)
❑ Method declarations

▪ Return_type method_name (parameter_list) method_body
▪ For example

integer sum (integer num1, integer num2)
start

result ← num1 + num2
end

❑ Method calls
▪ object.method (args)
▪ For example

mycalculator.sum(num1, num2)

Components of Pseudo-code (cont.)
❑ Method returns

▪ return value
▪ For example

integer sum (integer num1, integer num2)
start

result ← num1 + num2
return result

end

Components of Pseudo-code (cont.)
❑ Comments
▪ /* Multiple line comments go here. */
▪ // Single line comments go here
▪ Some people prefer braces {}, for comments

❑ Arrays
▪ A[i] represents the ith cell in the array A.
▪ The cells of an n-celled array A are indexed from A[0]

to A[n − 1] (consistent with Java).

Algorithm Design: Practice

❑ Example : Determining even/odd number
▪ A number divisible by 2 is considered an
even number, while a number which is
not divisible by 2 is considered an odd
number. Write pseudo-code to display
first N odd/even numbers.

Even/ Odd Numbers
Input range
for num←0; num<=range; num←num+1 do
if num % 2 = 0 then

print num is even
else

print num is odd
endif

endfor

Homework

1. Write an algorithm to find the largest of
a set of 10 numbers.

2. Write an algorithm in pseudocode that
finds the average of (10) numbers.

Input: 10 positive integers
Output: Max integer
Process:
Range=10;
Max🡨 0;
Counter🡨 1;
for counter←0;counter<=range; counter←counter+1 do

if integer>= max then
max=integer;
endif

Endfor
Return max;

1. Write an algorithm to find the largest of a set of 10 numbers.

Input: 10 positive integers
Output: average of 10 integers
Process:
sum🡨 0;
for i←0; i<=10; i←i+1 do

input x;
 sum=sum+x;
Endfor
Avg=sum/10;
Return Avg;

1. Write an algorithm in pseudocode that finds the average of (10)
numbers.

Write an algorithm which requires a number between 10 and 20, until the response is
appropriate. If the number is more than 20, it will display a message: “Bigger!" If the
number is less than 10, it will display “smaller!"

Begin
Input: num
Output: numbers between 10 and 20
Process:
Start
 if (num<10) Then
 print “Smaller !”
 elseif (num >20)
 print “Bigger !”
 End if
End

What are the values of the variables A, B and C after execution of the
following instructions?

Begin
A ← 3
B ← 10
C ← A + B
B ← A + B
A ← C
End

Write an algorithm to swap the value the 2 variables A and B.

Input: A and B and C
Output: Swapping
Process:
Start
 C🡨 A;
 A🡨 B;
 B🡨 C;
 Return A and B;
End

Write pseudocode that will take a number as input and tells whether a number
is positive, negative or zero.

Solution:
Begin
WRITE “Enter a number”
READ num
IF num> 0 THEN
 WRITE “The number is positive”
ELSE IF num = 0 THEN
 WRITE “The number is zero”
ELSE
 WRITE “The number is negative”
 ENDIF
ENDIF
End

