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Algorithm Analysis: Motivation  

 A problem can be solved in many different 
ways 

  Single problem, many algorithms 

 Which of the several algorithms should I 
choose? 

  We use algorithm analysis to answer this question 

o Writing a working program is not good enough 

o The program may be inefficient! 

o If the program runs on a large data set, then the running time 
becomes an issue 

 



What is algorithm analysis? 

 A methodology to predict the resources that 
the algorithm requires 

  Computer memory : the space it uses 

  Computational time: the time it takes to execute 

 We’ll focus on computational time 

  It does not mean memory is not important 

  Generally, there is a trade-off between the two 
factors 

o  Space-time trade-off is a common term 

 



How to analyse algorithms? (1) 

 Experimental Approach 

  Implement algorithms as programs and run them on 
computers 

  Not a good approach, though! 

o Results only for a limited set of test inputs 

o Difficult comparisons due to the experiment environments 

(need the same computers, same operating systems, etc.) 

o Full implementation and execution of an algorithm 

  We need an approach which allows us to avoid 
experimental study 









How to analyse algorithms? (2)  

 Theoretical Approach 

 General methodology for analysing the 

running time 

o Considers all possible inputs 

o Evaluates algorithms in a way that is independent 

from the hardware and software environments 

o Analyses an algorithm without implementing it 

 



How to analyse algorithms? (3)   

 Theoretical Approach (cont.) 

 Count only primitive operations used in an 

algorithm 

 Associate each algorithm with a function f(n) 

that characterises the running time of the 

algorithm as a function of the input size n 

o A good approximation of the total number of 

primitive operations  



Primitive Operations 

 Basic computations performed by an algorithm 

 Each operation corresponding to a low-level 
instruction with a constant execution time 

 Largely independent from the programming 
language 

 Examples 
 Evaluating an expression (x + y) 

 Assigning a value to a variable (x ←5) 1 operation 

 Comparing two numbers (x < y) 

 Indexing into an array (A[i]) 

 Calling a method (mycalculator.sum()) 

 Returning from a method (return result) 







Counting Primitive Operations (1) 

 Total number of primitive operations executed 

 is the running time of an algorithms 

 is a function of the input size 

 Example 
 Algorithm ArrayMax(A, n)   # operations 

 currentMax ←A[0]    2: (1 +1) 

 for i←1;i<n; i←i+1 do   3n-1: (1 + n+2(n- 1)) 

  if A[i]>currentMax then  2(n − 1) 

   currentMax ←A[i]  2(n − 1)     (at most!) 

  endif 

 endfor 

 return currentMax    1 

      Total:  7n − 2 



Counting Primitive Operations (2) 
Simpler approach!  

block or group of constant primitive operation can be 
combined! 

Example 
 Algorithm ArrayMax(A, n)   # operations 

 currentMax ←A[0]    1 

 for i←1;i<n; i←i+1 do   n 

  if A[i]>currentMax then  1(n-1) 

   currentMax ←A[i]  1(n-1)    (at most!) 

  endif 

 endfor 

 return currentMax    1 

      Total:  3n  



Algorithm efficiency: growth rate 

 An algorithm’s time requirements can be 

expressed as a function of (problem) input size 

 Problem size depends on the particular problem: 

 For a search problem, the problem size is the 

number of elements in the search space 

 For a sorting problem, the problem size is the 

number of elements in the given list 

 How quickly the time of an algorithm grows as 

a function of problem size -- this is often called 

an algorithm’s growth rate 



Algorithm growth rate 
Which algorithm is the most efficient? [The one with 

the growth rate Log N.]  



Algorithmic time complexity 
 Rather than counting the exact number of primitive 

operations, we approximate the runtime of an 

algorithm as a function of data size – time complexity 

 The type of that function will depend on the problem ( 

constant,linear,quadratic,….). 

 Algorithms A, B, C and D (previous slide) belong to 

different complexity classes 

 We’ll not cover complexity classes in detail – they will 

be covered in Algorithm Analysis course, in a later 

semester 

 We’ll briefly discuss seven basic functions which are 

often used in complexity analysis 

 

 









Seven basic function 

1. Constant function  f(n) = c 

2. Linear function   f(n) = n 

3. Quadratic function f(n) = n2 

4. Cubic function  f(n) = n3 

5. Log function   f(n) = log n 

6. Log linear function f(n) = n log n 

7. Exponential function f(n) = bn 

 

 


