
Algorithm Analysis tools

Dr.Rasha Elagamy

Algorithm Analysis: Motivation

 A problem can be solved in many different
ways

 Single problem, many algorithms

 Which of the several algorithms should I
choose?

 We use algorithm analysis to answer this question

o Writing a working program is not good enough

o The program may be inefficient!

o If the program runs on a large data set, then the running time
becomes an issue

What is algorithm analysis?

 A methodology to predict the resources that
the algorithm requires

 Computer memory : the space it uses

 Computational time: the time it takes to execute

 We’ll focus on computational time

 It does not mean memory is not important

 Generally, there is a trade-off between the two
factors

o Space-time trade-off is a common term

How to analyse algorithms? (1)

 Experimental Approach

 Implement algorithms as programs and run them on
computers

 Not a good approach, though!

o Results only for a limited set of test inputs

o Difficult comparisons due to the experiment environments

(need the same computers, same operating systems, etc.)

o Full implementation and execution of an algorithm

 We need an approach which allows us to avoid
experimental study

How to analyse algorithms? (2)

 Theoretical Approach

 General methodology for analysing the

running time

o Considers all possible inputs

o Evaluates algorithms in a way that is independent

from the hardware and software environments

o Analyses an algorithm without implementing it

How to analyse algorithms? (3)

 Theoretical Approach (cont.)

 Count only primitive operations used in an

algorithm

 Associate each algorithm with a function f(n)

that characterises the running time of the

algorithm as a function of the input size n

o A good approximation of the total number of

primitive operations

Primitive Operations

 Basic computations performed by an algorithm

 Each operation corresponding to a low-level
instruction with a constant execution time

 Largely independent from the programming
language

 Examples
 Evaluating an expression (x + y)

 Assigning a value to a variable (x ←5) 1 operation

 Comparing two numbers (x < y)

 Indexing into an array (A[i])

 Calling a method (mycalculator.sum())

 Returning from a method (return result)

Counting Primitive Operations (1)

 Total number of primitive operations executed

 is the running time of an algorithms

 is a function of the input size

 Example
 Algorithm ArrayMax(A, n) # operations

 currentMax ←A[0] 2: (1 +1)

 for i←1;i<n; i←i+1 do 3n-1: (1 + n+2(n- 1))

 if A[i]>currentMax then 2(n − 1)

 currentMax ←A[i] 2(n − 1) (at most!)

 endif

 endfor

 return currentMax 1

 Total: 7n − 2

Counting Primitive Operations (2)
Simpler approach!

block or group of constant primitive operation can be
combined!

Example
 Algorithm ArrayMax(A, n) # operations

 currentMax ←A[0] 1

 for i←1;i<n; i←i+1 do n

 if A[i]>currentMax then 1(n-1)

 currentMax ←A[i] 1(n-1) (at most!)

 endif

 endfor

 return currentMax 1

 Total: 3n

Algorithm efficiency: growth rate

 An algorithm’s time requirements can be

expressed as a function of (problem) input size

 Problem size depends on the particular problem:

 For a search problem, the problem size is the

number of elements in the search space

 For a sorting problem, the problem size is the

number of elements in the given list

 How quickly the time of an algorithm grows as

a function of problem size -- this is often called

an algorithm’s growth rate

Algorithm growth rate
Which algorithm is the most efficient? [The one with

the growth rate Log N.]

Algorithmic time complexity
 Rather than counting the exact number of primitive

operations, we approximate the runtime of an

algorithm as a function of data size – time complexity

 The type of that function will depend on the problem (

constant,linear,quadratic,….).

 Algorithms A, B, C and D (previous slide) belong to

different complexity classes

 We’ll not cover complexity classes in detail – they will

be covered in Algorithm Analysis course, in a later

semester

 We’ll briefly discuss seven basic functions which are

often used in complexity analysis

Seven basic function

1. Constant function f(n) = c

2. Linear function f(n) = n

3. Quadratic function f(n) = n2

4. Cubic function f(n) = n3

5. Log function f(n) = log n

6. Log linear function f(n) = n log n

7. Exponential function f(n) = bn

