
Algorithm Analysis tools

Dr.Rasha Elagamy

Algorithm Analysis: Motivation

 A problem can be solved in many different
ways

 Single problem, many algorithms

 Which of the several algorithms should I
choose?

 We use algorithm analysis to answer this question

o Writing a working program is not good enough

o The program may be inefficient!

o If the program runs on a large data set, then the running time
becomes an issue

What is algorithm analysis?

 A methodology to predict the resources that
the algorithm requires

 Computer memory : the space it uses

 Computational time: the time it takes to execute

 We’ll focus on computational time

 It does not mean memory is not important

 Generally, there is a trade-off between the two
factors

o Space-time trade-off is a common term

How to analyse algorithms? (1)

 Experimental Approach

 Implement algorithms as programs and run them on
computers

 Not a good approach, though!

o Results only for a limited set of test inputs

o Difficult comparisons due to the experiment environments

(need the same computers, same operating systems, etc.)

o Full implementation and execution of an algorithm

 We need an approach which allows us to avoid
experimental study

How to analyse algorithms? (2)

 Theoretical Approach

 General methodology for analysing the

running time

o Considers all possible inputs

o Evaluates algorithms in a way that is independent

from the hardware and software environments

o Analyses an algorithm without implementing it

How to analyse algorithms? (3)

 Theoretical Approach (cont.)

 Count only primitive operations used in an

algorithm

 Associate each algorithm with a function f(n)

that characterises the running time of the

algorithm as a function of the input size n

o A good approximation of the total number of

primitive operations

Primitive Operations

 Basic computations performed by an algorithm

 Each operation corresponding to a low-level
instruction with a constant execution time

 Largely independent from the programming
language

 Examples
 Evaluating an expression (x + y)

 Assigning a value to a variable (x ←5) 1 operation

 Comparing two numbers (x < y)

 Indexing into an array (A[i])

 Calling a method (mycalculator.sum())

 Returning from a method (return result)

Counting Primitive Operations (1)

 Total number of primitive operations executed

 is the running time of an algorithms

 is a function of the input size

 Example
 Algorithm ArrayMax(A, n) # operations

 currentMax ←A[0] 2: (1 +1)

 for i←1;i<n; i←i+1 do 3n-1: (1 + n+2(n- 1))

 if A[i]>currentMax then 2(n − 1)

 currentMax ←A[i] 2(n − 1) (at most!)

 endif

 endfor

 return currentMax 1

 Total: 7n − 2

Counting Primitive Operations (2)
Simpler approach!

block or group of constant primitive operation can be
combined!

Example
 Algorithm ArrayMax(A, n) # operations

 currentMax ←A[0] 1

 for i←1;i<n; i←i+1 do n

 if A[i]>currentMax then 1(n-1)

 currentMax ←A[i] 1(n-1) (at most!)

 endif

 endfor

 return currentMax 1

 Total: 3n

Algorithm efficiency: growth rate

 An algorithm’s time requirements can be

expressed as a function of (problem) input size

 Problem size depends on the particular problem:

 For a search problem, the problem size is the

number of elements in the search space

 For a sorting problem, the problem size is the

number of elements in the given list

 How quickly the time of an algorithm grows as

a function of problem size -- this is often called

an algorithm’s growth rate

Algorithm growth rate
Which algorithm is the most efficient? [The one with

the growth rate Log N.]

Algorithmic time complexity
 Rather than counting the exact number of primitive

operations, we approximate the runtime of an

algorithm as a function of data size – time complexity

 The type of that function will depend on the problem (

constant,linear,quadratic,….).

 Algorithms A, B, C and D (previous slide) belong to

different complexity classes

 We’ll not cover complexity classes in detail – they will

be covered in Algorithm Analysis course, in a later

semester

 We’ll briefly discuss seven basic functions which are

often used in complexity analysis

Seven basic function

1. Constant function f(n) = c

2. Linear function f(n) = n

3. Quadratic function f(n) = n2

4. Cubic function f(n) = n3

5. Log function f(n) = log n

6. Log linear function f(n) = n log n

7. Exponential function f(n) = bn

