Algorithm Analysis tools

Dr.Rasha Elagamy

Algorithm Analysis: Motivation

1 A problem can be solved In many different
ways

= Single problem, many algorithms

d Which of the several algorithms should |
choose?

= \We use algorithm analysis to answer this question

o The program may be inefficient!

o If the program runs on a large data set, then the running time
becomes an issue

What is algorithm analysis?

d A methodology to predict the resources that
the algorithm requires

d We’ll focus on computational time

= |t does not mean memory is not important

= Generally, there Is a trade-off between the two
factors

o Space-time trade-off Is a common term

How to analyse algorithms? (1)
d Experimental Approach

= Implement algorithms as programs and run them on
computers

= Not a good approach, though!

o Results only for a limited set of test inputs

o Difficult comparisons due to the experiment environments
(need the same computers, same operating systems, etc.)
o Full implementation and execution of an algorithm

= We need an approach which allows us to avoid
experimental study

Machine & programming language

independence

*» The programming language chosen to implement the
algorithm

*» The quality of the compiler

» The evaluation of efficiency should be as machine
independent as possible.

» count the number of basic operations the algorithm
performs.

» calculate how this number depends on the size of the
input.

Machine & programming language

independence

*» The programming language chosen to implement the
algorithm

» The quality of the compiler

» The evaluation of efficiency should be as machine
iIndependent as possible.

» count the number ofhe algorithm
performs.

» calculate how this number depends on the size of the

Input. A basic operation is an operation

which takes a constant amount of time to execute.

Example Basic Operations:
Addition, Subtraction, Multiplication, Memory Access..etc..,

Non-basic Operations:
Sorting, Searchingetc...

How to analyse algorithms? (2)
J Theoretical Approach

= General methodology for analysing the
running time
o Considers all possible inputs

o Evaluates algorithms in a way that is independent
from the hardware and software environments

o Analyses an algorithm without implementing it

How to analyse algorithms? (3)
J Theoretical Approach (cont.)

= Count only primitive operations used In an
algorithm

= Assoclate each algorithm with a function #(n)
that characterises the running time of the
algorithm as

o A good approximation of the total number of
primitive operations

Primitive Operations

J Basic computations performed by an algorithm

 Largely independent from the programming
language
J Examples

» Evaluating an expression (x + v)

= Assigning a value to a variable (x —5) 1 operation

= Comparing two numbers (x < vy)

* Indexing into an array (A[1])

» Calling a method (mycalculator.sum())

» Returning from a method (return result)

Primitive Operations @

1y

* Examples of primitive operations: ‘ /{ x

- Evaluating an expression — x2+cy

[{.
- Assigning a value to a variable — count « count+1

- Indexing into an array — Array|[95]
- Calling a method — mySort(myArray, n)

- Returning from a method — return(count)

23

Low Level Algorithm Analysis

* Based on primitive operations (low-level computations
independent from the programming language) ‘

o Bg.: (‘\
* Make an addition = 1 operation ‘ /J x

* Calling a method or returning from a method = 1 operation
* Index in an array = 1 operation
* Comparison = 1 operation etc.

* Method: Inspect the pseudo-code and count the number of

primitive operations executed by the algorithm

Counting Primitive Operations (1)

 Total number of primitive operations executed

= |s the running time of an algorithms
= |s a function of the Input size
d Example

Algorithm ArrayMax (A, n)
currentMax ~A[0]

for 1<1;1<n; 1<1+1 do
i1f A[i1]>currentMax then
currentMax <~A[1i]
endif
endfor

return currentMax

Total:

operations
2:(1+1)
3n-1: (1 + n+2(n- 1))
2(n—1)

2(n—1) (at most!)

n—2

Counting Primitive Operations (2)

constant primitive operation

JExample

Algorithm ArrayMax (A, n) # operations

currentMax «A[0] 1

for 1<1;1<n; 1<1+1 do n
1f A[i1]>currentMax then 1(n-1)

currentMax ~A[1] 1(n-1) (at most!)

endif

endfor

return currentMax 1

Total: 3n

Algorithm efficiency: growth rate

1 An algorithm’s time requirements can be
expressed as a function of (problem) input size

d Problem size depends on the particular problem:

= [Forasearch problem, the problem size is the
number of elements in the search space

= [Forasorting problem, the problem size is the
number of elements in the given list
d How quickly the time of an algorithm as
a function of problem size -- this is often called
an algorithm’s growth rate

Algorithm growth rate

Which algorithm is the most efficient? [The one with
the growth rate Log N.]

Value of
growth-rate
function

2" N3 N2 (algorithm D)

N * Log N (algorithm C)

N (algorithm B)
_Log N (algorithm A)

Algorithmic time complexity

Rather than counting the exact number of primitive
operations, we approximate the runtime of an
algorithm as 4 function of gata size — time complexity

The type of that function will depend on the problem (
constant,linear,quadratic,....).

Algorithms A, B, C and D (previous slide) belong to
different complexity classes

We’ll not cover complexity classes in detail — they will
be covered in Algorithm Analysis course, In a later
semester

We’ll briefly discuss seven basic functions which are
often used in complexity analysis

How to Calculate Running time

'Most algorithms transform input objects into
output objects

S 3 L 2 | e algorthm —lp

1 2 3 5

input object output object

' The running time of an algorithm typically grows
with the input size

* Analyze running time as a function of input

-
B] y b

How to Calculate Running Time

» The running time of an algorithm varies with
the inputs, and typically grows with the size of
the inputs.

» Analyze running time in the

» best case
» worst case
> average case

How to Calculate Running Time

* Best case running time is b an
usually useless ki

* Average case time is very
useful but often difficult to
determine

* We focus on the worst case
running time
*» Easier to analyze
* Crucial to applications

3

-
=

Running Time
8 &8 8 8

e

1000 2000 3000 4000
such as games, finance Tupuit St

and robotics E

S S A S A o

Seven basic function

Constant function
Linear function
Quadratic function
Cubic function

Log function

Log linear function
Exponential function

f(n)
f(n)
£f(n)

f(n) =

£f(n)
£f(n)
£ (n)

