Algorithm Analysis tools

Dr.Rasha Elagamy

Constant function

\square For a given argument/variable n, the function always returns a constant value
$\square \quad$ It is independent of variable n
\square It is commonly used to approximate the total number of primitive operations in an algorithm
\square Most common constant function is $g(n)=1$
\square Any constant value c can be expressed as constant function $f(n)=c . g(1)$

Linear function

\square For a given argument/variable n, the function always returns n
This function arises in algorithm analysis any time we have to do a single basic operation over each of n elements

- For example, finding min/max value in a list of values
- Time complexity of linear/sequential search algorithm is linear

Quadratic function

\square For a given argument/variable n, the function always returns square of n
This function arises in algorithm analysis any time we use nested loops

- The outer loop performs primitive operations in linear time; for each iteration, the inner loop also perform primitive operations in linear time
- For example, sorting an array in ascending/descending order using Bubble Sort (more later on)
- Time complexity of most algorithms is quadratic

Cubic function

\square For a given argument/variable n, the function always returns $n \times n \times n$ This function is very rarely used in algorithm analysis

- Rather, a more general class "polynomial" is often used

$$
\bigcirc \quad f(n)=a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}+\ldots+a_{d} n^{d}
$$

Logarithmic function

- For a given argument/variable n, the function always returns logarithmic value of n
- Generally, it is written as $f(n)=\log _{b} n$, where b is base which is often 2
\square This function is also very common in algorithm analysis
We normally approximate the $\log _{b} n$ to a value $x . x$ is number of times n is divided by b until the division results in a number less than or equal to 1
- $\log _{3} 27$ is 3 , since $27 / 3 / 3 / 3=1$.
- $\log _{4} 64$ is 3 , since $64 / 4 / 4 / 4=1$
- $\log _{2} 12$ is 4 , since $12 / 2 / 2 / 2 / 2=0.75 \leq 1$

Log linear function

- For a given argument/variable n, the function always returns $n \log n$
- Generally, it is written as $f(n)=n \log _{b} n$, where b is base which is often 2
This function is also common in algorithm analysis
Growth rate of log linear function is faster as compared to linear and log functions

Exponential function

- For a given argument/variable n, the function always returns b^{n}, where b is base and n is power (exponent)
- This function is also common in algorithm analysis
Growth rate of exponential function is faster than all other functions

Algorithmic runtime

\square Worst-case running time

- measures the maximum number of primitive operations executed
- The worst case can occur fairly often

O e.g. in searching a database for a particular piece of information
\square Best-case running time

- measures the minimum number of primitive operations executed
- Finding a value in a list, where the value is at the first position
- Sorting a list of values, where values are already in desired order
\square Average-case running time
- the efficiency averaged on all possible inputs
- maybe difficult to define what "average" means

Complexity classes

- Suppose the execution time of algorithm A is a quadratic function of $n\left(\right.$ i.e. $a n^{2}+b n+c$)
- Suppose the execution time of algorithm B is a linear function of n (i.e. $a n+b$)
- Suppose the execution time of algorithm C is a an exponential function of $n\left(i . e . ~ a 2^{n}\right)$
- For large problems higher order terms dominate the rest
- These three algorithms belong to three different "complexity classes"

Big-O and function growth rate

\square We use a convention O-notation (also called Big-Oh) to represent different complexity classes
\square The statement " $f(n)$ is $O(g(n)$ ") means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$
$\square g(n)$ is an upper bound on $f(n)$, i.e. maximum number of primitive operations
\square We can use the big-O notation to rank functions according to their growth rate

Big-O: functions ranking

BETTER

- $O(1)$ constant time
- O(log n) log time
- O(n) linear time
- O(n log n) log linear time
- $O\left(n^{2}\right)$ quadratic time
- $O\left(n^{3}\right) \quad$ cubic time
- $\mathrm{O}\left(2^{\mathrm{n}}\right) \quad$ exponential time

Simplifications

\square Keep just one term

- the fastest growing term (dominates the runtime)
\square No constant coefficients are kept
- Constant coefficients affected by machines, languages, etc
\square Asymptotic behavior (as n gets large) is determined entirely by the dominating term
- Example: $T(n)=10 n^{3}+n^{2}+40 n+800$
- If $n=1,000$, then $T(n)=10,001,040,800$
- error is 0.01% if we drop all but the n^{3} (the dominating) term

Big Oh: some examples

- $\mathrm{n}^{3}-3 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{3}\right)$
- $1+4 \mathrm{n}=\mathrm{O}(\mathrm{n})$
- $7 \mathrm{n}^{2}+10 \mathrm{n}+3=\mathrm{O}\left(\mathrm{n}^{2}\right)$
- $2^{\mathrm{n}}+10 \mathrm{n}+3=\mathrm{O}\left(2^{\mathrm{n}}\right)$
\square Moreover
- $7 \mathrm{n}^{2}+10 \mathrm{n}+3=\mathrm{O}\left(\mathrm{n}^{3}\right)$
- $7 \mathrm{n}^{2}+10 \mathrm{n}+3=\mathrm{O}\left(2^{\mathrm{n}}\right)$
- $7 \mathrm{n}^{2}+10 \mathrm{n}+3$ is NOT $\mathrm{O}(\mathrm{n})$

Big Oh: some examples

The difference is a tight bound and non-tight bound:
$\square 7 \mathrm{n}^{2}+10 \mathrm{n}+3=\mathrm{O}\left(\mathrm{n}^{2}\right)$ is called tight bound
$\square 7 \mathrm{n}^{2}+10 \mathrm{n}+3=\mathrm{O}\left(\mathrm{n}^{3}\right)$ is called non-tight bound

Practice

- Express the following functions in terms of Big-O notation with a tight bound (a, b and c are constants)

1. $f(n)=a n^{2}+b n+c$
2. $f(n)=2^{n}+n \log n+c$
3. $f(n)=n \log n+b \log n+c$
4. $f(n)=2^{n}+n \log n+3^{n}$
5. $f(n)=2^{n}+n \log n+100 \log n$

Summary \& Examples (1)

\square four interesting points:

1. Resources: number of primitive instructions: time
2. Complexity is function of inputs (n)
3. We will focus on the great value of n, Big-O capture the notion of the asymptotic value of the number of instructions
4. Worst case (the maximum number of primitive instructions)

Summary \& Examples (2)

$$
\begin{aligned}
& f(n+1)=f(n) \quad \rightarrow->O(1) \\
& f(n+1)=f(n)+1 \quad \cdots \quad 0(n) \\
& f(n+1)=f(n)+\varepsilon \quad \ldots->0\left(\log _{2}(n)\right) \\
& f(n+1)=f(n)+n \quad \ldots O\left(n^{2}\right) \\
& f(n+1)=2^{*} f(n) \quad \ldots \quad O\left(2^{n}\right)
\end{aligned}
$$

Summary \& Examples (3)

Problem 1: prepare a sport competition:

n : number of remaining days to competition

\Rightarrow
O(1) constant complexity
the number ot instructions (push-up) is independant of n

$$
\begin{equation*}
f(n+1)=f(n) \tag{1}
\end{equation*}
$$

Algorithm
input: $n \quad n>=2$ $m<-\cdots n$ do n 1 push-up $m<\cdots m-1$ until $m=1$

$O(n)$ linear complexity

\Rightarrow if we add 1 day we must do also 1 push-up the number of instruction increases linearly with \mathbf{n}

$$
f(n+1)=f(n)+1 \quad \cdots \cdots 0(n)
$$

Summary \& Examples (4)

\square Problem 1: prepare a sport competition:

\squaren : number of remaining days to competition

Algorithm

input: $n \quad n>=2$
$m<-\cdots n$
do
1 push-up
$m<\cdots m / 2$
until $m<=1$

$\mathrm{O}\left(\log _{2}(\mathrm{n})\right)$ algorithmic complexity
As a result there will have to be as many
"push-up" as we can divide m by 2

4			8
1	2	1	4
1	1	1	2
		1	1

For a large \boldsymbol{n} the number of instruction increases too little

Algorithm

input: $n \quad n>=2$
$m<-\cdots n$
do n
n push-up
$m<-m-1$
until $m=1$

$\mathrm{O}\left(\mathrm{n}^{2}\right)$) quadratic (polynomial) complexity

+ 1 day ------> "n" push-up
it's like two nested loops:
for $\mathbf{i}=\boldsymbol{n}$ to 1 for the number of days
for $\mathrm{j}=1$ to n for the number of push-up

$$
f(n+1)=f(n)+n \quad \cdots O\left(n^{2}\right)
$$

Summary \& Examples (5)

Problem 1: prepare a sport competition:

\squaren : number of remaining days to competition

Algorithm

input: $n \quad n>=2$
$m<-\cdots-n$
$n^{\prime}=1$
do
n^{\prime} push-up
$n^{\prime}=n^{\prime} * 2$
$m=m-1$
until $m=1$

Summary \& Examples (6)

\square Problem 2: research (x , L): L[1], L[2],...... L[n]
\square n: number of elements

A1

input : n element
$i=1$
if $x=L[i]$ then output (T)
else $i=i+1$
until $i>\operatorname{size}(L)$
output (F)

input: n element

```
i=1
if x = L [i] then output (T)
else i= i+1
until i> size(L)
output (F)
```

A2

input : n element
$t=\operatorname{size}(L)$
for $\mathrm{i}=1$ to t
$\{\mathrm{x}=\mathrm{L}[\mathrm{i}]$ then output (T) $\}$
output (F)

Summary \& Examples (7)

\square Problem 2: research (x , L): L[1], L[2],...... L[n]

\squaren : number of elements

Important:

- Count and increment is a fairly simple technique, it allows to get an idea of an algorithm.
- For a complex algorithm it is not always easy to count, but it can provide an interesting reflection track

