Algorithm Analysis tools

Dr.Rasha Elagamy

Constant function

- For a given argument/variable n, the function always returns a constant value
- \Box It is independent of variable *n*
- ☐ It is commonly used to approximate the total number of primitive operations in an algorithm
- \square Most common constant function is g(n) = 1
- Any constant value c can be expressed as constant function f(n) = c.g(1)

Linear function

- \square For a given argument/variable n, the function always returns n
- This function arises in algorithm analysis any time we have to do a single basic operation over each of *n* elements
 - For example, finding min/max value in a list of values
 - Time complexity of linear/sequential search algorithm is linear

Quadratic function

- For a given argument/variable n, the function always returns square of n
 - This function arises in algorithm analysis any time we use <u>nested loops</u>
 - The <u>outer loop</u> performs primitive operations in linear time; for each iteration, the <u>inner loop</u> also perform primitive operations in linear time
 - For example, sorting an array in ascending/descending order using Bubble Sort (more later on)
 - Time complexity of most algorithms is quadratic

Cubic function

- For a given argument/variable n, the function always returns $n \times n \times n$
- This function is very rarely used in algorithm analysis
 - Rather, a more general class "polynomial" is often used

$$f(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3 + \dots + a_d n^d$$

Logarithmic function

- For a given argument/variable n, the function always returns logarithmic value of n
- Generally, it is written as $f(n) = log_n n$, where b is base which is often 2
- This function is also very common algorithm analysis
 - We normally approximate the $log_b n$ to a value x. x is number of times n is divided by b until the division results in a number less than or equal to 1
 - $\log_3 27$ is 3, since 27/3/3/3 = 1. $\log_4 64$ is 3, since 64/4/4/4 = 1■ $\log_2 12$ is 4, since $12/2/2/2/2 = 0.75 \le 1$

Log linear function

- For a given argument/variable n, the function always returns $n \log n$
- Generally, it is written as $f(n) = n \log_b n$, where b is base which is often 2
- ☐ This function is also common in algorithm analysis
- ☐ Growth rate of log linear function is faster as compared to linear and log functions

Exponential function

- For a given argument/variable n, the function always returns b^n , where b is base and n is power (exponent)
- ☐ This function is also common in algorithm analysis
- ☐ Growth rate of exponential function is faster than all other functions

Algorithmic runtime

- **☐** Worst-case running time
 - measures the <u>maximum</u> number of primitive operations executed
 - The worst case can occur fairly often
 - O e.g. in searching a database for a particular piece of information
- **☐** Best-case running time
 - measures <u>the minimum</u> number of primitive operations executed
 - o Finding a value in a list, where the value is at the first position
 - o Sorting a list of values, where values are already in desired order
- **☐** Average-case running time
 - the efficiency <u>averaged</u> on all possible inputs
 - maybe difficult to define what "average" means

Complexity classes

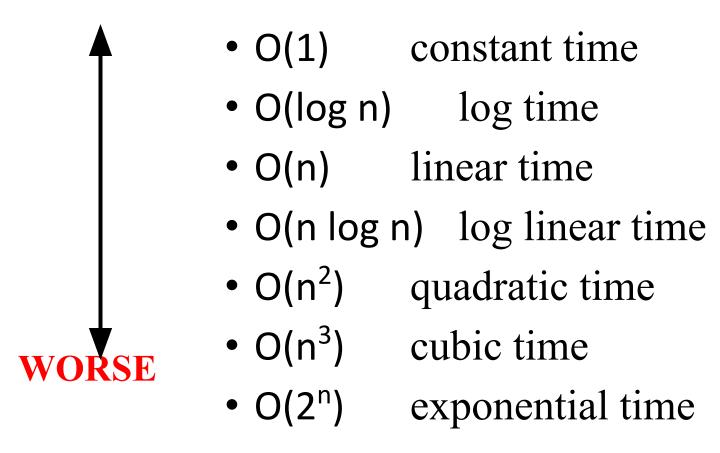
- Suppose the execution time of algorithm A is a quadratic function of n (i.e. $an^2 + bn + c$)
- □ Suppose the execution time of algorithm B is a linear function of n (i.e. an + b)
- Suppose the execution time of algorithm C is a an exponential function of n (i.e. $a2^n$)
- ☐ For large problems higher order terms dominate the rest
- ☐ These three algorithms belong to three different "complexity classes"

Big-O and function growth rate

- ☐ We use a convention <u>O-notation</u> (also called Big-Oh) to represent different complexity classes
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- \square g(n) is an upper bound on f(n), i.e. maximum number of primitive operations
- We can use the <u>big-O notation</u> to rank functions according to their growth rate

Big-O: functions ranking

BETTER



Simplifications

- ☐ Keep just one term
 - the fastest growing term (dominates the runtime)
- No constant coefficients are kept
 - Constant coefficients affected by machines, languages, etc
- Asymptotic behavior (as n gets large) is determined entirely by the dominating term
 - Example: $T(n) = 10 n^3 + n^2 + 40n + 800$
 - \circ If n = 1,000, then T(n) = 10,001,040,800
 - o error is 0.01% if we drop all but the n³ (the dominating) term

Big Oh: some examples

$$\Box$$
 $n^3 - 3n = O(n^3)$

$$\Box 1 + 4n = O(n)$$

$$\Box$$
 7n² + 10n + 3 = O(n²)

$$\square$$
 2ⁿ + 10n + 3 = O(2ⁿ)

- ☐ Moreover
- \Box 7n² + 10n + 3 = O(n³)
- \Box 7n² + 10n + 3 = O(2ⁿ)
- \Box 7n² + 10n + 3 is NOT O(n)

Big Oh: some examples

The difference is a tight bound and non-tight bound:

$$\Box 7n^2 + 10n + 3 = O(n^2)$$
 is called tight bound

$$\Box 7n^2 + 10n + 3 = O(n^3)$$
 is called non-tight bound

Practice

- ☐ Express the following functions in terms of Big-O notation with a tight bound (a, b and c are constants)
 - 1. $f(n) = an^2 + bn + c$
 - 2. $f(n) = 2^n + n \log n + c$
 - 3. $f(n) = n \log n + b \log n + c$
 - 4. $f(n) = 2^n + n \log n + 3^n$
 - 5. $f(n) = 2^n + n \log n + 100 \log n$

Summary & Examples (1)

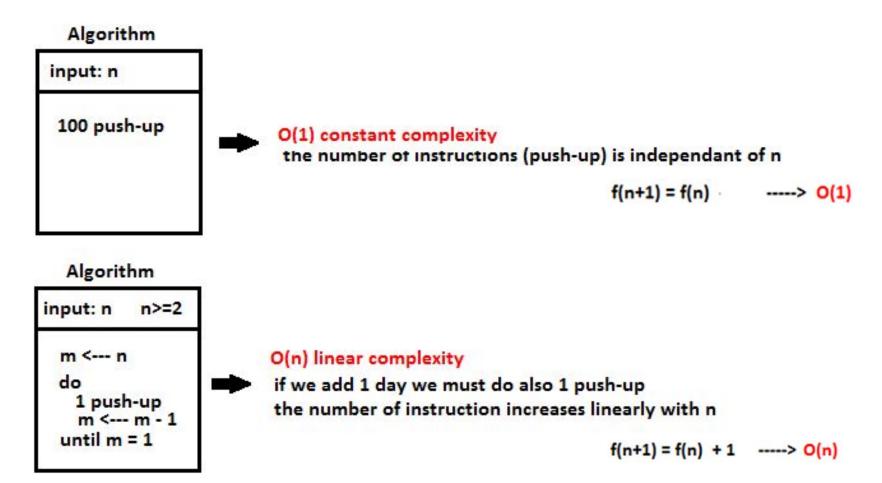
- ☐ four interesting points:
 - 1. Resources: number of primitive instructions: time
 - 2. Complexity is function of inputs (n)
 - 3. We will focus on the great value of n, Big-O capture the notion of the asymptotic value of the number of instructions
 - 4. Worst case (the maximum number of primitive instructions)

Summary & Examples (2)

$$f(n+1) = f(n)$$
 ----> $O(1)$
 $f(n+1) = f(n) + 1$ ----> $O(n)$
 $f(n+1) = f(n) + \in$ ----> $O(\log_2(n))$
 $f(n+1) = f(n) + n$ ----> $O(n^2)$
 $f(n+1) = 2* f(n)$ ----> $O(2^n)$

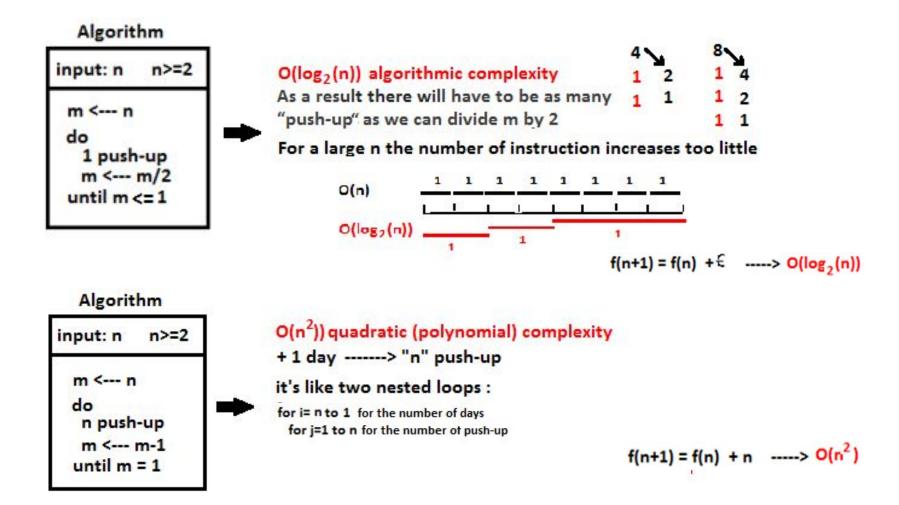
Summary & Examples (3)

- ☐ **Problem 1**: prepare a sport competition:
- n: number of remaining days to competition



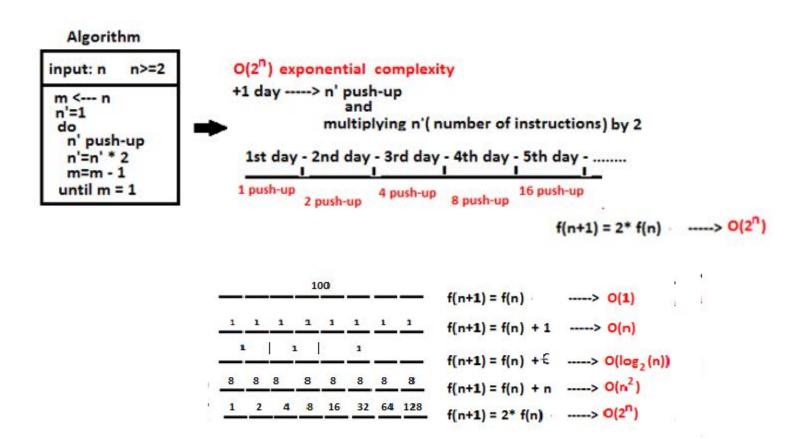
Summary & Examples (4)

- ☐ **Problem 1**: prepare a sport competition:
- n: number of remaining days to competition



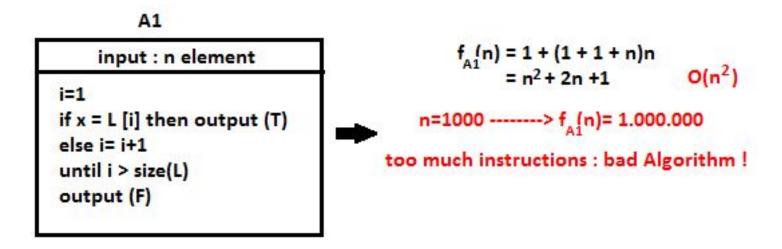
Summary & Examples (5)

- ☐ **Problem 1**: prepare a sport competition:
- n: number of remaining days to competition



Summary & Examples (6)

- \square Problem 2: research (x , L): L[1], L[2],..... L[n]
- n: number of elements



input : n element

f (n) = n + n(2)
= 3n

O(n)

t = size(L)

for i = 1 to t
{ x = L [i] then output (T) }

output (F)

Summary & Examples (7)

- **Problem 2**: research (x, L): L[1], L[2],..... L[n]
- n: number of elements

```
A3 (x, L)
         input : n element
                                            we suppose that L[1] <= L[2]<=..... L[n]
   if L = Ø then output(F)
                                                    O(log (n))
   if L ={e} if L =x then output (T)
            else output (F)
                                                n=1000 -----> f (n)= 10
   L/2 ----> L1, L2
   if x < max L1 then A3 (x, L1)
                                           few instructions : best Algorithm!
   else A3 (x, L2)
                   return the first elements of the list
0(1)
O(n)
                    search an element in a sorted list
O(log,(n)) ---->
                    binary search in a sorted list
O(n2)
                    treating all pairs of a list
O(2n)
           ---->
                    looking for every subset of a set or searching in a binary tree
```

Important:

- Count and increment is a fairly simple technique, it allows to get an idea of an algorithm.
- For a complex algorithm it is not always easy to count, but it can provide an interesting reflection track