Algorithm Analysis tools

Dr.Rasha Elagamy

Constant function

For a given argument/variable n,

It 1s independent of variable n

It 1s commonly used to approximate the total
number of primitive operations in an algorithm

Most common constant function 1s g(n) = 1

Any constant value ¢ can be expressed as
constant function f(n) = c.g(1)

[_inear function

1 For a given argument/variable n, the function

always returns »

1 This function arises 1n algorithm analysis any
time we have to do a single basic operation over
cach of n elements

= For example, finding min/max value in a list
of values

= Time complexity of linear/sequential search
algorithm 1s linear

Quadratic function

1 For a given argument/variable n, the function

always returns square of »
1 This function arises 1n algorithm analysis any
time we use nested loops

= The outer loop performs primitive operations in
linear time; , the mner loop also
perform primitive operations 1n linear time

= For example, sorting an array n
ascending/descending order using Bubble Sort
(more later on)

= Time complexity of most algorithms i1s quadratic

Cubic function

1 For a given argument/variable n, the function

always returns n x n X n
1 This function is very rarely used 1n algorithm
analysis
= Rather, a more general class “polynomial” 1s
often used

_ 2 3 d
o fin)=a,tantan tan+..+tan

Logarithmic function

For a given argument/variable n, the function
always returns logarithmic value of n

Generally, 1t 1s written as f(rn) = log,n, where b
1s base which 1s often 2

This function 1s also very common 1n
algorithm analysis

We normally approximate the log,n to a value
x. x 1s number of times » 1s divided by b until

the division results 1n a number less than or
equal to 1

= log,27 is 3, since 27/3/3/3 = 1.
= log,64 is 3, since 64/4/4/4 = 1
= log,12 is 4, since 12/2/2/2/2 = 0.75 < 1

Log linear function

For a given argument/variable n, the function
always returns n log n

Generally, 1t 1s written as f(n) = n log,n, where

b 1s base which 1s often 2

This function 1s also common 1n algorithm
analysis

Growth rate of log linear function 1s faster as
compared to linear and log functions

Exponential function

1 For a given argument/variable n, the function
always returns b", where b 1s base and n 1s
power (exponent)

This function 1s also common 1n algorithm

analysis
Growth rate of exponential function is faster
than all other functions

Algorithmic runtime

0 Worst-case running time

= measures the maximum number of primitive operations
executed

= The worst case can occur fairly often

O e.g. 1n searching a database for a particular piece of information

(d Best-case running time

= measures the minimum_number of primitive operations
executed
o Finding a value 1n a list, where the value is at the first position
o Sorting a list of values, where values are already in desired order

(] Average-case running time
= the efficiency averaged on all possible inputs
= maybe difficult to define what “average” means

Complexity classes

Suppose the execution time of algorithm A 1s a
quadratic function of n (i.e. an® + bn + c)

Suppose the execution time of algorithm B 1s a
linear function of n (1.e. an + b)

Suppose the execution time of algorithm C 1s a
an exponential function of n (1.e. a2")

For large problems higher order terms dominate
the rest

These three algorithms belong to three different
“complexity classes”

Big-O and function growth rate

Jd We use a convention O-notation (also called
Bi1g-Oh) to represent different complexity classes

1 The statement “f(n) is O(g(n))” means that the
growth rate of f(n) 1s no more than the growth rate

ot g(n)

EI i.e. maximum
number of primitive operations

1 We can use the big-O notation to

Bi1g-O: functions ranking

BETTER
A * O(1) constant time
* O(logn) log time
* O(n) linear time
* O(nlogn) log linear time
* O(n?) quadratic time
WOKSE * O(n®) cubic time

* O(2") exponential time

Simplifications

1 Keep just one term
= the fastest growing term (dominates the runtime)
1 No constant coefficients are kept
= Constant coefficients affected by machines,
languages, etc

d Asymptotic behavior (as n gets large) 1s determined
entirely by the dominating term

» Example: T(n) = 10 n’ + n° + 40n + 800
o Ifn = 1,000, then T(n) = 10,001,040,800

o error is 0.01% if we drop all but the n® (the
dominating) term

Big Oh: some examples

d n’-3n=0(’)
d 1+4n=0(n)
3 7n’+ 10n+ 3 =O(n?)
d 2"+ 10n + 3 =0(2")

1 Moreover

3 7n°+10n+ 3 = O(n’)

3 7n’+ 10n+3=0(2"

3 7n*+10n+3 is NOT O(n)

Big Oh: some examples

The difference 1s a tight bound and non-tight bound:
7n% + 10n + 3 = O(n?) is called tight bound

7n% + 10n + 3 = O(n?) is called non-tight bound

Practice

J Express the following functions in terms of Big-O
notation with a tight bound (a, b and ¢ are constants)

1.

Al S

f(n)

an“ + bn + c

2"+ n log n + cC

n logn+ b logn + C
2"+ n log n + 3"

2"+ n logn + 100 log n

Summary & Examples (1)

1 four interesting points:

1.

Resources: number of primitive
instructions: time

Complexity 1s function of 1inputs
(n)

We will focus on the great wvalue
of n, B1g-O capture the notion of
the asymptotic value of the
number of 1nstructions

Worst case (the maximum number of
primitive instructions)

Summary & Examples (2)

f(n+1) = f(n) ---==> 0(1)
f(n+l)=f(n) +1 ---> O(n)
f(n+1) = f{(n) +€ > Oflog, (n))
f(n+1)=f(n) +n -—> O(n’)

f(n+1) = 2* f(n) -=--> O(2")

Summary & Examples (3)

1 Problem 1: prepare a sport competition:

1 n: number of remaining days to competition

Algorithm

input: n

100 push-up

Algorithm

input:n n>=2

m <--- n

do
1 push-up
me<—-—-m-1
untiilm=1

0O(1) constant complexit
mp- ©1) plexity

g

the number ot instructions (push-up) is independant of n

f(n+1) = f(n) > 0(1)

O(n) linear complexity
if we add 1 day we must do also 1 push-up
the number of instruction increases linearly with n

f(n+l)=f(n) +1 > O(n)

Summary & Examples (4)

1 Problem 1: prepare a sport competition:
1 n: number of remaining days to competition

Algorithm

input:n n>=2

m <---n
do
1 push-up
m <---m/2
untilm¢=1

Algorithm

input:n n>=2

m <--—-n
do
n push-up
m <---m-1
untiim=1

4Ny &\
O(log,(n)) algorithmic complexity g 2 14
As a result there will havetobeasmany 1 1 1 2
“push-up” as we can divide m by 2 T |

For a large n the number of instruction increases too little

A o A A % XM A
O(n)

O(Iog;(n)) —— 1 1
1

f(n+1) = f(n) +€ > O(log, (n))

O(nz)) quadratic (polynomial) complexity

+ 1 day -----—-->"n" push-up

it's like two nested loops :

fori= nto 1 for the number of days
for j=1 to n for the number ot push-up

f(n+1)=f(n) +n -—> O(n’)

Summary & Examples (5)

1 Problem 1: prepare a sport competition:
1 n: number of remaining days to competition

Algorithm
input:n n>=2 O(Zn) exponential complexity
i +1 day «--=-> n' push-up
n'=1 and
do g multiplying n'(number of instructions) by 2
n' push-up
n'=n'*2 1st day - 2nd day - 3rd day - 4th day - Sth day -
m=m-1 1 1 1 1 1
untiim=1 1 push-up R 4 push-up 8 s aw 16 push-up .
f(n+1) =2* f(n) —> O(2")
100
e e e e e . e e (41 = (1) —> 0(1)
——— 2 f(n#¥1)=f(n) 41 > O(n)
- S . 1
—_ — e f(n#1) = f(n) +€ —eee> Oflog, (n))
e i s s SR E i Sse)
L S B B oS T

Summary & Examples (6)

1 Problem 2: research (x, L): L[1],L[2]....... L[n]
d n: number of elements

Al
input : n element I f in)= 12"' (; * 11'" n)n it
=nc+2n + n
i=1
if x = L [i] then output (T) n=1000 -------- > fA{n)= 1.000.000
else i= i+l 8
: : _ : ,
antil | >size(l) too much instructions : bad Algorithm !
output (F)
A2
input : n element l £An)=mt n(2)
= 3n O(n)
t=size(L)
i . n=1000 -------- > £ _[n)=3.000

{ x=L [i] then output (T) }
output (F)

Summary & Examples (7)

1 Problem 2: research (x, L): L[1],L[2]....... L[n]
d n: number of elements

A3 (x, L)

input : n element

we suppose that L[1] <= L[2]<=....... L[n]

if L= @ then output(F)

if L ={e} if L =x then output (T) O(log,(n))
else output (F)
=1000 -==veuem f In)=
L/2 > L1, L2 - n=1000 >£ In)=10

if x < max L1 then A3 (x, L1)

few instructions : best Algorithm!
else A3 (x, L2)

0(1) ----> return the first elements of the list
O(n) --=-> sgearch an element in a sorted list
O(log,(n)) -—-> binary search in asorted list

o(n?) ----> treating all pairs of a list

o(2") e

looking for every subset of a set or searching in a binary tree

Important:

= Count and increment is a fairly simple technique, it allows to get an idea of an algorithm.
= For a complex algorithm it is not always easy to count, but it can provide an interesting reflection track

