Recursion

Recursion: Basic idea

\square We have a bigger problem whose solution is difficult to find
\square We divide/decompose the problem into smaller (sub) problems

- Keep on decomposing until we reach to the smallest sub-problem (base case) for which a solution is known or easy to find
- Then go back in reverse order and build upon the solutions of the sub-problems
\square Recursion is applied when the solution of a problem depends on the solutions to smaller instances of the same problem

Example 1: Factorial

\square A function which calls itself

int factorial (int n) \{

Finding a recursive solution

\square Each successive recursive call should bring you closer to a situation in which the answer is known (cf. n-1 in the previous slide)

- A case for which the answer is known (and can be expressed without recursion) is called a base case
- Each recursive algorithm must have at least one base case, as well as the general recursive case

QThe factorial of a positive integer n, denoted $n!$, is defined as the product of the integers from 1 to n. For example, $4!=4 \cdot 3 \cdot 2 \cdot 1=24$.

Recursion in Action: factorial(n)

```
factorial (5) = 5 x factorial (4)
    = 5 x (4 x factorial (3))
    = 5 x (4 x (3 x factorial (2)))
    = 5 x (4 x (3 x (2 x factorial (1))))
    = 5 x (4 x (3 x (2 x (1 x factorial (0)))))
    = 5 x (4 x (3 x (2 x (1 x 1))))
    =5 x (4 x (3 x (2 x 1)))
    = 5 x (4 x (3 x 2))
    =5 x (4 x 6)
    = 5 x 24
    = 120
```


Recursion vs. Iteration: Computing N!

\square The factorial of a positive integer n, denoted n !, is defined as the product of the integers from 1 to n. For example, $4!=4 \cdot 3 \cdot 2 \cdot 1=24$.

- Iterative S

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1 & \text { if } n \geq 1\end{cases}
$$

- Recursive Solution

$$
\text { factorial }(n)= \begin{cases}1 & \text { if } n=0 \\ n \cdot \text { factorial }(n-1) & \text { if } n \geq 1\end{cases}
$$

Recursion: Do we really need it?

\square In some programming languages recursion is imperative

- For example, in declarative/logic languages (LISP, Prolog etc.)
- Variables can't be updated more than once, so no looping
- Heavy backtracking

Recursion in Action: factorial(n)

```
factorial (5) = 5 x factorial (4)
    = 5 x (4 x factorial (3))
    = 5 x (4 x (3 x factorial (2)))
    = 5 x (4 x (3 x (2 x factorial (1))))
    = 5 x (4 x (3 x (2 x (1 x factorial (0)))))
    = 5 x (4 x (3 x (2 x (1 x 1))))
    = 5 x (4 x (3 x (2 x 1)))
    = 5 x (4 x (3 x 2))
    = 5 x (4 x 6)
    = 5 x 24
    = 120
```


How to write a recursive function?

\square Determine the size factor (e.g. n in factorial(n))
\square Determine the base case(s)

- the one for which you know the answer (e.g. $0!=1$)
\square Determine the general case(s)
- the one where the problem is expressed as a smaller version of itself (must converge to base case)
\square Verify the algorithm
- use the "Three-Question-Method" - next slide

Linear Recursion

- The simplest form of recursion is linear recursion, where a method is defined so that it makes at most one recursive call each time it is invoked
This type of recursion is useful when we view an algorithmic problem in terms of a first or last element plus a remaining set that has the same structure as the original set

Example 2: Summing the Elements of an Array

\square We can solve this summation problem using linear recursion by observing that the sum of all n integers in an array A is:

- Equal to $A[0]$, if $n=1$ (The array has one element), or
- The sum of the first $n-1$ integers in A plus the last element

```
int LinearSum(int A[], n){
    if n = 1 then
        return A[0]; // base case
    else
    return A[n-1] + LinearSum(A, n-1)
```

\}

Analyzing Recursive Algorithms using Recursion Traces

- Recursion trace for an execution of $\operatorname{LinearSum}(A, n)$ with input parameters A $=[4,3,6,2,5]$ and $n=5$

Linear recursion: Reversing an Array

\square Swap $1^{\text {st }}$ and last elements, $2^{\text {nd }}$ and second to last, $3^{\text {rd }}$ and third to last, and so on
\square If an array contains only one element no need to swap $_{i} \xrightarrow{\text { Base case) }}$

\square Update i and j in such a way that they converge to the base case $(\mathrm{i}=\mathrm{j})$

Example 3: Reversing an Array

void reverseArray (int $\mathbb{A}[], i, j)\{$

```
if (i < j){
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
    reverseArray(A, i+1, j-1)
    }
    // in base case, do nothing
```

\}

Linear recursion: run-time analysis

[Time complexity of linear recursion is proportional to the problem size

- Normally, it is equal to the number of times the function calls itself
\square In terms of Big-O notation time complexity of a linear recursive function/algorithm is $O(n)$

