
Introduction to Trees

Chapter 8

1

2

• folders/files on a computer

• family genealogy; organizational charts

• AI: decision trees

• compilers: parse tree

a = (b + c) * d;

• cell phone T9

d+

*a

=

cb

Trees in computer science

Towards Non-Linear Data Structures

❑ The data structures we have studied so far are
linear; an element is followed by exactly one
element

❑ The data can also be represented in a
non-linear fashion
▪ An important concept is a family like structure;

this structure is called a tree

3

Tree

❑ A tree is a hierarchical data structure which
consists of a set of nodes connected through edges

❑ Note: A can be followed by B or C.

A

B C

H

I
D E F G

4

Terminology (1)

❑ Node: is a structure which
normally contains a value, e.g.
round boxes labeled as D,E, etc.

❑ Root: the top most node in the
tree, e.g. A is root node

❑ Child Node: the roots of the
subtrees of a node X are the
children of X. e.g. B and C are
children of A – A is parent of B
and C

A

B C

H

I
D E F G

5

Terminology (2)

❑ Terminal nodes (leaf/external):
nodes that have degree zero.
OR nodes with no children.
E.g. D, E

❑ Nonterminal/internal nodes:
nodes that don’t belong to
terminal nodes. E.g. B, C

A

B C

H

I
D E F G

6

Terminology (3)

❑ Siblings: children of the
same parent are said to be
siblings. E.g. B and C are
siblings, so is F and G.

❑ Ancestors of a node: all the
nodes along the path from
the root to that node. e.g.
ancestors of I are I, H, C
and A

A

B C

H

I
D E F G

7

Tree Traversal (1)

❑ What is traversal?
▪ Traversal is the facility to move through a structure,
visiting each of the nodes exactly once

❑ Which of the following is not traversal?
1. Bisha 🡪 Abaha 🡪 Jeddah 🡪 Riadh
2. Bisha 🡪 Abaha 🡪 Jeddah 🡪 Bisha 🡪 Riadh (A

repeated visit to Bisha – not allowed)

8

Tree Traversal (2)

❑ Pre-order Traversal
❑ Post-order Traversal
❑ In-order Traversal
❑ Notion

▪ P: Visit the parent node
▪ L: Visit the left subtree
▪ R: Visit the right subtree

9

Pre-order Traversal (1)

❑ PLR, i.e.,
▪ First, visit the parent node
▪ Then, visit the left subtree (in pre-order)
▪ Then, visit the right subtree (in pre-order)

40

4530

6020 35

10

Pre-order Traversal (2)

40

4530

6020 35

Step 1: root = 40, so display it, then traverse its left
subtree (root = 40) and then right subtree (root = 45)

Display: 40

11

Pre-order Traversal (3)

40

4530

6020 35

Step 2: root = 30, so display it, then traverse its left
subtree (root = 20) and then right subtree (root = 35)

Display: 40 30

12

Pre-order Traversal (4)

40

4530

6020 35

Step 3: root = 20, so display it, then traverse its left
subtree (root = null) and then right subtree (root = null)

Display: 40 30 20
Since node with value 20 is a leaf node, we finished traversing this
subtree (root = 20), which is a left subtree of node with value 30.
So, in the next step we’ll traverse the right subtree of 30. 13

Pre-order Traversal (5)

40

4530

6020 35

Step 4: root = 35, so display it, then traverse its left
subtree (root = null) and then right subtree (root = null)

Display: 40 30 20 35
Since node with value 35 is a leaf node, we finished traversing this
subtree (root = 35), which is a right subtree of node with value 30.
So, in the next step we’ll traverse the right subtree of 40. 14

Pre-order Traversal (6)

40

4530

6020 35

Step 5: root = 45, so display it, then traverse its left
subtree (root = null) and then right subtree (root = 60)

Display: 40 30 20 35 45
Since node with value 45 has no left subtree but a right subtree
(root = 60), in the next step we’ll traverse this subtree (root = 60).

15

Pre-order Traversal (7)

40

4530

6020 35

Step 6: root = 60, so display it, then traverse its left
subtree (root = null) and then right subtree (root = null)

Display: 40 30 20 35 45 60

Finished!

16

17

▪ In a preorder traversal, a node is visited before its
descendants

▪ Application: print a structured document

Pre-order Traversal (8)

Post-order Traversal (1)

❑ LRP, i.e.,
▪ First, visit the left subtree (in post-order)
▪ Then, visit the right subtree (in post-order)
▪ Then, visit the parent

18

Post-order Traversal (2)

40

4530

6020 35

Step 1:

Display: 20

19

Post-order Traversal (3)

40

4530

6020 35

Step 2:

Display: 20 35

20

Post-order Traversal (4)

40

4530

6020 35

Step 3:

Display: 20 35 30

21

Post-order Traversal (5)

40

4530

6020 35

Step 4: Note that the node with value 45 has no left subtree!

Display: 20 35 30 60

22

Post-order Traversal (6)

40

4530

6020 35

Step 5:

Display: 20 35 30 60 45

23

Post-order Traversal (7)

40

4530

6020 35

Step 6:

Display: 20 35 30 60 45 40

Finished!
24

Post-order Traversal (8)

▪ In a postorder traversal, a node is visited after its
descendants

▪ Application: compute space used by files in a directory
and its subdirectories

25

In-order Traversal (1)

❑ LPR, i.e.,
▪ First, visit the left subtree (in in-order)
▪ Then, visit the parent
▪ Then, visit the right subtree (in in-order)

26

In-order Traversal (2)

40

4530

6020 35

Step 1:

Display: 20

27

In-order Traversal (3)

40

4530

6020 35

Step 2:

Display: 20 30

28

In-order Traversal (4)

40

4530

6020 35

Step 3:

Display: 20 30 35

29

In-order Traversal (5)

40

4530

6020 35

Step 4:

Display: 20 30 35 40

30

In-order Traversal (6)

40

4530

6020 35

Step 5:

Display: 20 30 35 40 45

31

In-order Traversal (7)

40

4530

6020 35

Step 6:

Display: 20 30 35 40 45 60

32

Example

33

The order in which the nodes are visited during a tree traversal can be easily
determined by imagining there is a “ colored flag” attached to each node, as
follows:

Binary tree

34

• A binary tree is the most common kind of tree
– Each node in a binary tree has at most two link instance

variables
– A binary tree must satisfy the Binary Search Tree Storage Rule

• The root of the tree serves a purpose similar to that of
the instance variable head in a linked list
– The node whose reference is in the root instance variable is

called the root node

• The nodes at the "end" of the tree are called leaf nodes
– Both of the link instance variables in a leaf node are null

35

▪ All the values in the left subtree must be less than the
value in the root node

▪ All the values in the right subtree must be greater
than or equal to the value in the root node

▪ This rule is applied recursively to each of the two
subtrees

Binary Search Tree Property

⬥ Stored keys must satisfy
the binary search tree
property.
» ∀ y in left subtree of x,

then key[y] ≤ key[x].

» ∀ y in right subtree of x,
then key[y] ≥ key[x].

Binary tree Example

36

Binary tree coding

37

public class BinaryTree {
 private int value;
 private BinaryTree leftChild;
 private BinaryTree rightChild;
 
// constructor
public BinaryTree(int x, BinaryTree l, BinaryTree r) {
 value = x;
 leftChild = l;
 rightChild = r;
}
 
// accessors
public int getValue() {
return(value);
}
 

 
 

public BinaryTree getLeftSubTree() {
return(leftChild);
}
 
 
 
 
public BinaryTree getRightSubTree()
{
return(rightChild);
}
……..
}

Binary Tree Prorder Traversal

38

■ In preorder, the root is visited first

■ Here’s a preorder traversal to print out all the
elements in the binary tree:

 public void preorderPrint(BinaryTree bt) {
 if (bt == null) return;
 System.out.println(bt.value);
 preorderPrint(bt.leftChild);
 preorderPrint(bt.rightChild);
}

PLR

Binary Tree Inorder Traversal

39

■ In inorder, the root is visited in the middle

■ Here’s an inorder traversal to print out all the
elements in the binary tree:

 public void inorderPrint(BinaryTree bt) {
 if (bt == null) return;
 inorderPrint(bt.leftChild);
 System.out.println(bt.value);
 inorderPrint(bt.rightChild);
}

 LPR

Binary Tree Postorder Traversal

40

■ In postorder, the root is visited last

■ Here’s a postorder traversal to print out all the
elements in the binary tree:

 public void postorderPrint(BinaryTree bt) {
 if (bt == null) return;
 postorderPrint(bt.leftChild);
 postorderPrint(bt.rightChild);
 System.out.println(bt.value);
}

LRP

