Introduction to Trees

Chapter 8

Trees in computer science

e folders/files on a computer

e family genealogy; organizational charts
e Al: decision trees

e compilers: parse tree
a=(b+c)*d;

e cell phone T9

= () My Documents Nainse: Root
= _backup Joe
2 cse100 John
& cse142 e / @
=) cseld3 .
= £ 09wi
() assassin : ;
- ®» ®® ©
) grades
© handouts @ é) ®
= £ homework

=) 1-sortedintlist

Towards Non-Linear Data Structures

1 The data structures we have studied so far are
linear; an element 1s followed by exactly one
element

1 The data can also be represented 1n a

non-linear fashion

= An mmportant concept 1s a family like structure;
this structure 1s called a tree

Tree

1 A tree 1s a hierarchical data structure which
consists of a set of nodes connected through edges

1 Note: A can be followed by B or C.

Terminology (1)

d Node: 1s a structure which
normally contains a value, e.g.
round boxes labeled as D,E, etc.

1 Root: the top most node in the
tree, e.g2. A 1s root node

J Child Node: the roots of the
subtrees of a node X are the P

children of X. e.g. B and C are
children of A — A 1s parent of B
and C

Terminology ()

] Terminal nodes (leaf/external):
nodes that have degree zero.
OR nodes with no children.
E.g. D, E

1 Nonterminal/internal nodes:
nodes that don’t belong to
terminal nodes. E.g. B, C

Terminology (3)

] Siblings: children of the
same parent are said to be
siblings. E.g. B and C are
siblings, so 1s F and G.

1 Ancestors of a node: all the
nodes along the path from
the root to that node. e.g.

ancestors of I are I, H, C
and A

Tree Traversal ()

J What is traversal?

= Traversal 1s the facility to move through a structure,
visiting each of the nodes exactly once

] Which of the following is not traversal?
1. Bisha [J Abaha [1 Jeddah [J Riadh

2. Bisha [J Abaha [I Jeddah [Bisha [l Riadh (A
repeated visit to Bisha — not allowed)

Tree Traversal (2

J Pre-order Traversal
1 Post-order Traversal

] In-order Traversal
] Notion

= P: Visit the parent node
= L: Visit the left subtree
= R: Visit the right subtree

Pre-order Traversal ()
A PLR,i.e.,

= First, visit the parent node

= Then, visit the left subtree (in pre-order)

= Then, visit the right subtree (in pre-order)

40

,//////\\\\\

30 45

20 35 60

Pre-order Traversal (0

Step 1: root = 40, so display it, then traverse its left
subtree (root = 40) and then right subtree (root = 45)

40

30 45

20 35 60

Display: 40

Pre-order Traversal 3)

Step 2: root = 30, so display it, then traverse its left
subtree (root = 20) and then right subtree (root = 35)

40
[30 } 45
20 35 60

Display: 40 30

Pre-order Traversal)

Step 3: root = 20, so display it, then traverse its left
subtree (root = null) and then right subtree (root = null)

40
/\
30 45
(20) 35 60

Display: 40 30 20
Since node with value 20 is a leaf node, we finished traversing this

subtree (root = 20), which 1s a left subtree of node with value 30.
So, 1n the next step we’ll traverse the right subtree of 30.

Pre-order Traversal (s

Step 4: root = 35, so display it, then traverse its left
subtree (root = null) and then right subtree (root = null)

40
/\
30 45
/ \
20 35 60

Display: 40 30 20 35

Since node with value 35 is a leaf node, we finished traversing this
subtree (root = 35), which 1s a right subtree of node with value 30.
So, 1n the next step we’ll traverse the right subtree of 40.

Pre-order Traversal ()

Step S: root = 45, so display it, then traverse its left
subtree (root = null) and then right subtree (root = 60)

40
/7<\)
30 45
20 35 60

Display: 40 30 20 35 45

Since node with value 45 has no left subtree but a right subtree
(root = 60), in the next step we’ll traverse this subtree (root = 60).

Pre-order Traversal (7)

Step 6: root = 60, so display it, then traverse its left
subtree (root = null) and then right subtree (root = null)

40
/30\ 45
20 35 60

Display: 40 30 20 35 45 60

Finished!

Pre-order Traversal (s)

= |n a preorder traversal, a node is visited before its
descendants

= Application: print a structured document

. [Make Money Fast!]

z/Ng

[1. Motivations] [2. Methods] [References]

3/\4 6 7 8

R 2.1 Stock 2.2 Ponzi 2.3 Bank
[1.1 Greed] [1.2 Avndlty] Eacad [Scheme] {Robbery]

17

Post-order Traversal (1)
J LRP, 1.e.,

= First, Vlslt the left subtree (in post-order)
= Then, visit the right subtree (1n post-order)
= Then, visit the parent

Post-order Traversal (2

Step 1:

40

/\
30 45
[20) 35 60

Display: 20

Post-order Traversal 3)

Step 2:

40

/\

30 45

_ ~

20 35 60

Display: 20 35

Post-order Traversal 4

Step 3:

40

[30) 45

20 35 60

Display: 20 35 30

Post-order Traversal (s

Step 4: Note that the node with value 45 has no left subtree!

40

/\
30 45
20 35 [60)

N

Display: 20 35 30 60

Post-order Traversal (o)

Step 35:

40

/7<\)

30 45
/\ N4

20 35 60

Display: 20 35 30 60 45

Post-order Traversal (7)

Step 6:
N\
|40)
A
30 45
20 35 60

Display: 20 35 30 60 45 40

Finished!

Post-order Traversal (s)

= |n a postorder traversal, a node is visited after its
descendants

= Application: compute space used by files in a directory
and its subdirectories

[homeworks/] [programs/]

1 2 4 5 6

hic.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K

25

In-order Traversal ()

d LPR, 1e.,
= First, visit the left subtree (in in-order)
= Then, visit the parent
= Then, visit the right subtree (in in-order)

In-order Traversal

Step 1:

40

/\
30 45
[20 } 35 60

Display: 20

In-order Traversal 3

Step 2:

/_\/\
[30) 45
)<>\ ~
20 35 60

Display: 20 30

In-order Traversal 4

Step 3:

40

/\

30 45

— >~

20 35 60

Display: 20 30 35

In-order Traversal (s

Step 4:
N\
|40)
- >A
30 45
20 35 60

Display: 20 30 35 40

In-order Traversal ()

Step 35:

40

/7<\)

30 45
[//////\\\\\\\ \\\;:><\\
20 35 60

Display: 20 30 35 40 45

In-order Traversal (7

Step 6:

40

[/////§Q\\\\\\ 45
20 35 60

Display: 20 30 35 40 45 60

Example

The order in which the nodes are visited during a tree traversal can be easily

determined by imagining there is a “ colored flag” attached to each node, as
follows:

Start here Pre-Order ABDHIECFGJ

S ‘ In-Order HDIBEAFCJG
Post-Order HIDEBFJGCA

.......
~eay

..,N ______ P .“‘N— 3 3

Binary tree

* A binary tree is the most common kind of tree

— Each node in a binary tree has at most two link instance
variables

— A binary tree must satisfy the Binary Search Tree Storage Rule

* The root of the tree serves a purpose similar to that of
the instance variable head in a linked list

— The node whose reference is in the root instance variable is
called the root node

 The nodes at the "end" of the tree are called leaf nodes
— Both of the link instance variables in a leaf node are null

Binary Search Tree Property

All the values in the left subtree must be less than the
value in the root node

All the values in the right subtree must be greater
than or equal to the value in the root node

This rule is applied recursively to each of the two
subtrees
¢ Stored keys must satisfy
the binary search tree
property.
» V yin left subtree of x,
then key[y] < key[x].

» V yinright subtree of x,
then key[y] 2 key[x].

Binary tree Example

A Binary Tree

root

10
null
null

left subtree right subtree

Binary tree coding

public class BinaryTree {

private int value; public BinaryTree getLeftSubTree() {
private BinaryTree leftChild; return(leftChild);

private BinaryTree rightChild; }

I/ constructor
public BinaryTree(int X, BinaryTree |, BinaryTree r) {
value = x;

leftChild = I: public BinaryTree getRightSubTree()
rightChild = r; {
} return(rightChild);
}

/[accessors e
public int getValue() { }
return(value);

}

37

Binary Tree Prorder Traversal

« In preorder, the root is visited first

« Here’s a preorder traversal to print out all the
elements in the binary tree:

public void preorderPrint(BinaryTree bt) {
if (bt == null) return;
System.out.printin(bt.value);
preorderPrint(bt.leftChild); PLR
preorderPrint(bt.rightChild);

Binary Tree Inorder Traversal

=« Ininorder, the root is visited in the middle

=« Here’s an inorder traversal to print out all the
elements in the binary tree:

public void inorderPrint(BinaryTree bt) {
if (bt == null) return;
inorderPrint(bt.leftChild);
System.out.printin(bt.value);
inorderPrint(bt.rightChild); LPR

¥

Binary Tree Postorder Traversal

« In postorder, the root is visited last

= Here’s a postorder traversal to print out all the
elements in the binary tree:

public void postorderPrint(BinaryTree bt) {
if (bt == null) return;
postorderPrint(bt.leftChild);
postorderPrint(bt.rightChild); LRP
System.out.printin(bt.value);

