
CS211-Algorithms & Data
Structures

Dr. Sameer M. Alrehaili

1

Taibah University

College of Science and Computer Engineering, Yanbu

What is Recursion?

● Something whose definition includes itself.
● Self referencing.
● Dreams within your dreams.
● Recursion is useful for big problems to broke down into smaller ones.
● Recursive is used when the problem is naturally recursive (e.g. Fibonacci).
● Recursive is used when the data is naturally recursive (e.g. filesystem).

2

Recursive algorithms

● Any algorithm which calls it self to do part of its work is called a recursive
algorithm.

● It is important to ensure that the recursive algorithm terminates. Otherwise,
stack overflow error occurs.

● When a problem is defined in terms of similar subtasks, then it is useful to
apply recursive methods.

3

Recursion

● Recursion is a way of solving problems by having a function call itself.
● Recursion is also a way in which we break down a problem into one or more

subproblems.
● A recursive function always is defined by two parts:

○ Base case : compute the result immediately given the inputs to the function call.

○ Recursive case or recursive formula : compute the result with the help of one or more
recursive calls to the same function, but with the inputs somehow reduced in size or
complexity, closer to a base case.

isAncestor(F, E) =?

FUNCTION isAncestor(x, y):
IF x is y's parent, THEN:

 return true
ELSE

 return isAncestor(x, y's mom) OR isAncestor(x, y's dad)
}

4

What is Recursion?

5

Recursion

Input Output

Simple recursive implementation

Iterative

public static void iterative(int n){

 for(int i=1;i<=n;i++)

 System.out.println(i);

}

6

Recursive

public static void recursion(int n){

 if(n==1)

 System.out.println(n);

 else

 {

 recursion(n-1);

 System.out.println(n);

 }

}

As an example consider the following function which prints all integer number
between 1 and n.

Printing from 1 to 3 using recursive methods

7

recursion(3);

if(n==1)

 System.out.println(n);

else{

 recursion(n-1);

 System.out.println(n);

}

if(n==1)

 System.out.println(n);

else{

 recursion(n-1);

 System.out.println(n);

}

if(n==1)

 System.out.println(n);

else{

 recursion(n-1);

 System.out.println(n);

}

n=3 n=2
n=1

1

2

3

Factorial

● n! is the product of all integers between
1 and n.

● The problem definition is n!, and the
subproblem (n-1)!

8

n! = n*(n-1)*(n-2)...3*2*1
5! = 5*4*3*2*1 = 120
3! = 3*2*1 = 6
2! = 2*1 =2
1! = 1
0! = 1

5! = 5*(4*(3*(2*(1*(1)))))

5! = 5*4!
4! = 4* 3!
3! = 3 * 2!
2! = 2 * 1!
1!= 1* 0!
0! = 1

F(5) = (5+F(4+F(3+F(2+F(1+F(0))))))

An example of the implementation of factorial of 4

9

factorial(4) = 4 X factorial(3)

factorial(3) = 3 X factorial(2)

factorial(2) = 2 x factorial(1)

factorial(1) = 1 X factorial(0)

factorial(4)

factorial(0) = 1

Stack

factorial(0)

factorial(1)

factorial(2)

factorial(3)

factorial(4)

main

Factorial algorithms

Iterative

class factorial{

public static void main(String[] args){

System.out.println(f(5));

}

 public static int factorial(int n){

 int f=1;

 for(int i =2; i<=n;i++)

 f*=i;

 return f;

 }

}

10

Recursive

class factorial_recursion{

public static void main(String[] args){

System.out.println(factorial(5));

}

 public static int factorial(int n){

 if(n==0)

 return 1;

 else

 return n* factorial(n-1);

 }

}

Sum elements of an array

11

Fibonacci

Fi = Fi-1 + Fi-2 i>=2

F0=0

F1=1

12

0 1 1 2 3 5 8

Pow(n, a)

2^2 = 2*2

2^3 = 2*2*2

2^4 = 2*2*2*2

Homework

Use iterative and recursion

On tuesday

13

Recursion vs Iteration

Iterative function

● It terminates when a condition is false.
● Each iteration doesn’t require any extra

space.

14

Recursive function

● It terminates when a base case is
reached.

● Each recursive requires extra space on
the memory.

● Shorter and easier to formulate complex
problems.

●

Tail and non-tail recursion

● Non-tail recursive method

public static void recursion(int n){

 if(n==1)

 System.out.println(n);

 else

 {

 recursion(n-1);

 System.out.println(n);

 }

}

15

● Tail recursive method

public static void recursion(int n){

 if(n==1)

 System.out.println(n);

 else

 {

 System.out.println(n);

 recursion(n-1);

 }

}

● A recursive method is tail when there are no pending operations to be performed on return from the
recursive call.

