
 STACKS AND QUEUES

1

CHAPTER 7

What is a Stack?

 Stack is a data structure in which data is added and removed at
only one end called the top

 Examples of stacks are:

Stack of books

Stack of trays in a cafeteria

2

Stack
 A Last In First Out (LIFO) data structure

 Primary operations: Push and Pop

 Push

 Add an element to the top of the stack

 Pop

 Remove the element from the top of the stack

 An example

3

Building Stack Step-by-Step

2

8

1

7

2

7

2

1

7

2

1

7

2

8

1

7

2

8

1

7

2

top

top

top

top
top

top

Push(8) Push(2)

p
o
p
()

pop()
pop()

4

Stack Errors

 Stack Overflow

 An attempt to add a new element in an already full stack is an error

 A common mistake often made in stack implementation

 Stack Underflow

 An attempt to remove an element from the empty stack is also an error

 Again, a common mistake often made in stack implementation

5

Applications of Stacks

 Some direct applications:
 Page-visited history in a Web browser

 Undo sequence in a text editor

 Evaluating postfix expressions (e.g., xy+)

 Some indirect applications
 Auxiliary data structure for some algorithms (e.g., Depth First Search

algorithm)

 Component of other data structures

6

The Stack Abstract Data Type

• Stacks are the simplest of all data structures

• Formally, a stack is an abstract data type (ADT) that
supports the following two methods:
• push(e): Insert element e to the top of the stack

• pop(): Remove from the stack and return the top element
on the stack;

• an error occurs if the stack is empty – what error?

• Additionally, let us also define the following methods:
• size(): Return the number of elements in the stack

• isEmpty(): Return a Boolean indicating if the stack is empty

• top(): Return the top element in the stack, without removing
it
• an error occurs if the stack is empty

7

The Stack Abstract Data Type
• Example : The following table shows a series of stack operations and their

effects on an initially empty stack S of integers.

 Operation Output

Stack Contents

push(5)
push(3)
pop()
push(7)
pop()
top()
pop()
pop()
isEmpty()
push(9)
push(7)
push(3)
push(5)
size()
pop()
push(8)
pop()
pop()

-
-
3
-
7
5

5
"error“
true
-

-

-
-
4
5
-
8
3

(5)

(5, 3)
(5)
(5, 7)
(5)
(5)
()
()
()

(9)

(9, 7)
(9, 7, 3)
(9, 7, 3, 5)
(9, 7, 3, 5)
(9, 7, 3)

(9, 7, 3, 8)
(9, 7, 3)
(9, 7)

8

A Stack Interface in Java

• The stack data structure is included as a "built-in"
class in the java.util package of Java.

• Class java.util.Stack is a data structure that
stores generic Java objects and includes, among
others, the following methods:
• push(),

• pop()

• peek() (equivalent to top()),

• size(), and empty() (equivalent to isEmpty()).

• Methods pop() and peek() throw exception
EmptyStackException if they are called on an empty
stack.

9

The Stack Abstract Data Type
• Implementing an abstract data type in Java involves two steps. The

first step is the definition of a Java Application Programming
Interface (API), or simply interface, which describes the names of
the methods that the ADT supports and how they are to be declared
and used.

• In addition, we must define exceptions for any error conditions that
can arise. For instance, the error condition that occurs when calling
method pop() or top() on an empty stack is signaled by throwing an
exception of type EmptyStackException,

10

The Stack Abstract Data Type

11

 Code Fragment 7.1 : Interface Stack documented with comments in Javadoc style.

Note also the use of the generic parameterized type, E, which implies that a stack can

contain elements of any specified class.

A Simple Array-Based Stack Implementation

• We can implement a stack by storing its elements in an array.

• Specifically, the stack in this implementation consists of
• an N-element array S

• plus an integer variable t that gives the index of the top element in array S.

Figure 5.2: Implementing a stack with an array S. The top element in the stack is stored in the cell S[t].

• Recalling that arrays start at index 0 in Java,
• we initialize t to −1, and we use this value for t to identify an empty

stack.

• Likewise, we can use t to determine the number of elements (t
+ 1).

• FullStackException, to signal the error that arises if we try to
insert a new element into a full array.

• Exception FullStackException is specific to this
implementation and is not defined in the stack ADT.

12

Code Fragment 7.2: Implementing a stack using an array of a given size, N.

13

A Drawback with the Array-Based Stack

Implementation
• The array implementation of a stack is simple and efficient.

• This implementation has one negative aspect
• it must assume a fixed upper bound, CAPACITY, on the ultimate size

of the stack.

• Stacks serve a vital role in a number of computing
applications, so it is helpful to have a fast stack ADT
implementation such as the simple array-based
implementation.

• Thus, even with its simplicity and efficiency, the array-based
stack implementation is not necessarily ideal.

• Fortunately, there is another implementation, which we
discuss next,
• that does not have a size limitation

• and use space proportional to the actual number of elements stored
in the stack.

14

Implementing a Stack with a Generic Linked

List

• Using a singly linked list to implement the stack ADT.

• In designing such an implementation, we need to decide if
• the top of the stack is at the head

• or at the tail of the list.

• Rather than use a linked list that can only store objects of a certain
type, we would like, in this case, to implement a generic stack using a
generic linked list.

• Thus, we need to use a generic kind of node to implement this linked
list. We show such a Node class in Code Fragment 7.3

15

Implementing a Stack with a Generic

Linked List
• Code Fragment 7.3: Class Node, which implements a generic node for a singly

linked list.

•

16

A Generic NodeStack Class

• A Java implementation of a stack, by means of a
generic singly linked list, is given in Code
Fragment 7.4

• All the methods of the Stack interface are
executed in constant time.

• In addition to being time efficient, this linked list
implementation has a space requirement that is
O(n), where n is the current number of elements
in the stack.

17

Code Fragment 7.4: Class NodeStack, which implements the Stack interface using a

singly linked list, whose nodes are objects of class Node from Code Fragment 7.3

18

Code Fragment 7.5: A generic method that reverses the elements in an array of type E

objects, using a stack declared using the Stack<E> interface.

19

• The basic idea is simply to push all the elements of the array in order into a stack
and then fill the array back up again by popping the elements off of the stack.

Reversing an Array Using a Stack

Code Fragment 7.6: A test of the reverse method using two arrays.

20

