CS211: Algorithms \& Data structures

Dr. Sameer M. Alrehaili

September 28, 2021
srehail@taibahu.edu.sa
college of computer science and engineering ,yanbu, Taibah

University

Assignment 2 Solution

1. Calculate the total number of primitive operations executed for the following algorithm?
```
Algorithm 1: GCD
    Input: Two integer numbers \(a\) and \(b\)
    Output: gcd
    \(\mathrm{m} \leftarrow\) The minimum number of \(a\) and \(b\).
    \(\operatorname{gcd} \leftarrow 0\)
    \(\mathrm{i} \leftarrow 2\)
    while \((i \leq m)\) do
        if \(a \bmod i=0\) and \(b \bmod i=0\) then
            \(g c d \leftarrow i\)
        end if
        \(\mathrm{i} \leftarrow i+1\)
    end while
    return \(g c d\)
```

$T(n)=c n$, where c is some constant and n is the size of the input. At line (1), we will consider that the process of calculating the minimum of a or b may take constant time c and it executed 1 time, so the total of the first line is 1 c. At line (2), we count one unit for initialising $\operatorname{gcd}(1 \times 1)$. At line (3), we count one unit for initialising $i(1 \times 1)$. At line (4), we count one unit for each time we go around the while-loop $+1(n)$ (note that the counter started at 2 and that means n times. At line (5), we count 5 units for each time we go around the loop $(5(n-1)=5 n-5)$. At line (6), we count $n-1$. At line(8), we count $2(n-1)=2 n-2$. At line (10), we count 1.
$\mathbf{T}(\mathbf{n})=c+1+1+n+5 n-5+n-1+2 n-2+1=\mathbf{9 n - 5}+\mathbf{c}$
Since $9 n$ is the fastest growing term in the function we can say $T(n)$ grows at the order of n and we write: $\mathbf{T}(\mathbf{n})=\mathcal{O}(n)$.

To estimate the process of selecting the minimum of two given numbers, here we include the process of selecting minimum inside the algorithm

```
Algorithm 2: GCD
    Input: Two integer numbers \(a\) and \(b\)
        Output: \(g c d\)
        if \(a<b\) then
        \(\mathrm{m} \leftarrow a\)
    else
        \(\mathrm{m} \leftarrow b\)
    end if
    \(\operatorname{gcd} \leftarrow 0\)
    \(\mathrm{i} \leftarrow 2\)
    while \((i \leq m)\) do
        if \(a \bmod i=0\) and \(b \bmod i=0\) then
            \(g c d \leftarrow i\)
        end if
        \(\mathrm{i} \leftarrow i+1\)
    end while
    return \(g c d\)
```

The process of calculating the minimum of a or b may here is 3 .
$\mathbf{T}(\mathbf{n})=1+1+1+1+1+(n)+5 *(n-2)+(n-2)+2 *(n-1)=\mathbf{9 n - 2}$

Since $9 n$ is the highest term in the function we can say $T(n)$ grows at the order of n and we write: $\mathbf{T}(\mathbf{n})=\mathcal{O}(n)$.

