CS211: Algorithms \& Data structures

Dr. Sameer M. Alrehaili

September 28, 2021
srehaili@taibahu.edu.sa
college of computer science and engineering ,yanbu, Taibah University

Assignment 2 Solution

1. Calculate the total number of primitive operations executed for the following algorithm?
```
Algorithm 1: Computing the power of a number
    Input: \(x\), is a real number \(x \in \boldsymbol{R}, n\) is an integer number, \(n \in \boldsymbol{Z}\)
    Output: \(x^{n}\)
    \(p \leftarrow 1\)
    for \(i \leftarrow 1\) to \(n\) do
        \(p \leftarrow p \times x\)
    end for
    return \(p\)
```

$T(n)=c n$, where c is some constant and n is the size of the input. At line (1), we count one unit for initialising p and it executed 1 time, so the total of the first line is $1 \times 1=1$. At line (2), we count one unit for initialising $i(1 \times 1)$ at the begining of the for-loop, one unit for testing $i \leq n$ each time we go around the loop +1 . In addition, two units for incrementing i each time we go around the for-loop $(2 n)$. Therefore, the total of the second line is $1+(n+1)+2 n=3 n+2$. At line (3), we count two units for each time we go around the loop (2n). At line(5), we count one unit for returning statement.
$\mathbf{T}(\mathbf{n})=1+3 n+2+2 n+1=\mathbf{5 n}+\mathbf{4}$
Since $5 n$ is the highest term in the function we can say $T(n)$ grows at the order of n and we write: $\mathbf{T}(\mathbf{n})=\mathcal{O}(n)$.

