

Algorithms \& Data Structures

Dr. Sameer M. Alrehaili srehaili@taibahu.edu.sa

October 4, 2021

Assignment03 - Solutions

Due Wed $6^{\text {th }}$ Oct 08:00 AM

1 Problem 1

Let A is an array of n elements as depicted in the following.
Write a pseudocode for binary searching over the array, A, which consists of n integer elements?

$$
A=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

```
Algorithm 1: Binary Search
    Input: \(A\) is a sorted array of \(n\) elements \(A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\). key, the value of the target
    element.
        Output: An index \(i\) of the target element such that \(k=a_{i}\), or -1 when it cannot be found.
        \(l \leftarrow 1\)
        \(r \leftarrow n\)
        while \((l \leq r)\) do
        mid \(\leftarrow\lfloor(l+r) / 2\rfloor\)
        if \(k e y=A_{\text {mid }}\) then
            return mid
        else if \(k e y<A_{\text {mid }}\) then
            \(r \leftarrow \operatorname{mid}-1\)
        else
            \(l \leftarrow \operatorname{mid}+1\)
        end if
    end while
    return -1
```

$\mathbf{T}(\mathbf{n})=\mathcal{O}(\log n)$ runs in logarithmic time

2 Problem 2

Let A and B be matrices of order $m \times n$, while m is the number of rows and n is the number of columns as they are represented in the following graph.

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
a_{3,1} & a_{3,2} & \ldots & a_{3, n} \\
\vdots & \vdots & \vdots & \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right) \\
& B=\left(\begin{array}{cccc}
b_{1,1} & b_{1,2} & \ldots & b_{1, n} \\
b_{2,1} & b_{2,2} & \ldots & b_{2, n} \\
b_{3,1} & b_{3,2} & \ldots & b_{3, n} \\
\vdots & \vdots & \vdots & \\
b_{m, 1} & b_{m, 2} & \ldots & b_{m, n}
\end{array}\right)
\end{aligned}
$$

Wrtie the pseudocode of two matrices multiplication and estimate its time complexity?
Note: You are not asked to write a Java program. Just write a set of steps to solve the problm of multiplying two matrices.

```
Algorithm 2: Multiplication
    Input: \(A, B\) are two matrices.
    Output: A new matrix \(P=A \times B\).
    \(m_{1} \leftarrow\) the number of rows in \(A\)
    \(m_{2} \leftarrow\) the number of rows in \(B\)
    \(n_{1} \leftarrow\) the number of columns in \(A\)
    \(n_{2} \leftarrow\) the number of columns in \(B\)
    if \(n_{1} \neq m_{2}\) then
        print("Matrices cannot be Multiplied ")
        break
    end if
    \(P \leftarrow\) a new matrix of order \(m_{1} \times n_{2}\)
    \(i \leftarrow 1\)
    while \(\left(i \leq m_{1}\right)\) do
        \(j \leftarrow 1\)
        while ( \(j \leq n_{2}\) ) do
            \(k \leftarrow 1\)
            while ( \(k \leq m_{2}\) ) do
                \(p_{i, j} \leftarrow p_{i, j}+\left(a_{i, k} \times b_{k, j}\right)\)
                \(k \leftarrow k+1\)
            end while
            \(j \leftarrow j+1\)
        end while
        \(i \leftarrow i+1\)
    end while
```

$\mathbf{T}(\mathbf{n})=\mathcal{O}(n \times n \times n)=\mathcal{O}\left(n^{3}\right)$ runs in polynomial time

