Chapter 6

Linked Lists

Algorithms and Data Structures

Anatomy of a linked list

= A linked list consists of:
A sequence of nodes

myList | &

= Each node contains a value and a link (pointer or reference) to some other node

a | b [e]—{c[®]—{d[®

= The last node contains a null link

* The list may have a header

Singly Linked Lists and Arrays

Singly linked list

Array

Elements are stored in linear
order, accessible with links.
Do not have a fixed size.

Cannot access the previous
element directly.

No binary search.

Elements are stored in linear
order, accessible with an
index.

Have a fixed size.

Can access the previous
element easily.

Binary search.

Algorithms and Data Structures

More terminology

= A node’s successor is the next node in the sequence
The last node has no successor

= A node’s predecessor is the previous node in the
sequence
The first node has no predecessor

= Alist’s length is the number of elements in it
A list may be empty (contain no elements)

Pointers and references

" |[n Cand C++ we have “pointers,” while in Java we have “references”

These are essentially the same thing

The difference is that C and C++ allow you to modify pointers in arbitrary ways, and to
point to anything

= |nJava, a reference is more of a “black box,” or ADT (Abstract data
type)

Available operations are:
dereference (“follow”)

copy
compare for equality

There are constraints on what kind of thing is referenced: for example,
a reference to an array of int can only refer to an array of int

6

Creating references

" The keyword new creates a new object, but also returns
a reference to that object

* For example, Person p = new Person("John")

new Person("John") creates the object and returns a reference
to it
We can assign this reference to p, or use it in other ways

Creating links in Java

myList: i‘

44 ® Y Q7 & T—> 23 &
class Cell { int value;
Cell next;
Cell (intv, Cell n) { // constructor
value = v;
} next = n;

3
Cell temp = new Cell(17, null);

temp = new Cell(23, temp);
temp = new Cell(97, temp);
Cell myList = new Cell(44, temp);

Singly-linked lists

 Here is a singly-linked list (SLL):

myList | &

3 |+—p [e]—c |e]—(

" Each node contains a value and a link to its
successor (the last node has no successor)

" The header points to the first node in the list (or
contains the null link if the list is empty)

Singly-linked lists in Java

public class SLL {
private SLLNode first;

public SLL() {
this.first = null;
b

// methods...

* This class actually describes the
header of a singly-linked list

e However, the entire list is
accessible from this header

e Users can think of the SLL as being
the list

» Users shouldn’t have to worry about
the actual implementation

10

SLL nodes in Java

public class SLLNode {
protected Object element;
protected SLLNode succ;

protected SLLNode(Object elem,
SLLNode succ) {

this.element = elem;
this.succ = succ;

11

Creating a simple list

" To create the list ("one", "two", "three"):

SLL numerals = new SLL();
numerals.first =new SLLNode("one",new SLLNode("two",new SLLNode("three", null)));

numerals

one |®7T*two |®T " three| ®

12

Traversing a SLL

" The following method traverses a list (and prints its elements):

public void printFirstTolLast() {

for (SLLNode curr = first; curr '= null; curr = curr.succ) {
System.out.print(curr.element + " ");

»
»

= You would write this as an instance method of the SLL class

numerals

one | &7 —*two |® T three| ®

Algorithms and Data Structures 13

Traversing a SLL (animation)

curr

numerals \\
o —ftwo [¢+—

one

three| ©

14

Inserting a node into a SLL

= There are many ways you might want to insert a new node
into a list:

* Asthe new first element

* Asthe new last element

» Before a given node (specified by a reference)
e After a given node

 Before a given value

* After a given value

= All are possible, but differ in difficulty

15

Inserting as a new first element

" This is probably the easiest method to implement
= |nclass SLL (not SLLNode):

void insertAtFront(SLLNode node) {
node.succ = this.first;
this.first = node;

»

" Notice that this method works correctly when inserting
into a previously empty list

16

Inserting a node after a given
value

void insertAfter(Object obj, SLLNode node) {
for (SLLNode here = this.first;
here '= null;
here = here.succ) {
if (here.element.equals(obj)) {
node.succ = here.succ;
here.succ = node;
return;
Y/ f
¥y // for

// Couldn't insert--do something reasonable!

17

Algorithms and Data Structures

Inserting after (animation)

numerals

node

25 |®

one

1two

H 7 three| ®

* Find the node you want to insert after
= First, copy the link from the node that's already in the list

= Then, change the link in the node that's already in the list

18

Deleting a node from a SLL

= |n order to delete a node from a SLL, you have to change
the link in its predecessor

= This is slightly tricky, because you can’t follow a pointer
backwards

= Deleting the first node in a list is a special case, because
the node’s predecessor is the list header

19

Deleting an element from a SLL

» To delete the first element, change the link in the header

numerals | €
NN

one |®T—>two |® 7T three|®

» To delete some other element, change the link in its

predecesso
numerals

one |®F—*two |®T " three| ®

= Deleted nodes will eventually be garbage collected

20

Deleting from a SLL

public void delete(SLLNode del) {

SLLNode succ = del.succ;

// If del is first node, change link in header
if (del == first) first = succ;

else { // find predecessor and change its link

SLLNode pred = first;

while (pred.succ != del) pred = pred.succ;
pred.succ = succ;

NnUMera

Is

one | * T two [* T L

Nre

Algorithms and Data Structures 21

Limitations of a singly-linked list

* Insertion at the front is O(1)

* insertion at other positions is O(n)

 Removing a node requires a reference to the previous node
 We can traverse the list only in the forward direction

= How to overcome these limitations?
> Double-linked list

22

Algorithms and Data Structures

Doubly-linked lists

1 Here is a doubly-linked list (DLL):

myDLL

\

= Each node contains a value, a link to its successor (if any),
and a link to its predecessor (if any)

= The header points to the first node in the list and to the
last node in the list (or contains null links if the list is

empty)

23

DLLs compared to SLLs

= Advantages: " Disadvantages:

 Can be traversed in either * Requires more space
direction (may be essential * List manipulations are
for some programs) slower (because more links

« Some operations, such as must be changed)
deletion and inserting * Greater chance of having
before a node, become bugs (because more links
easier must be manipulated)

24

Constructing SLLs and DLLs

public class SLL {

private SLLNode first;

public SLL() {
this.first = null;
b

// methods...

public class DLL {

private DLLNode first;
private DLLNode last;

public DLL() {
this.first = null;
this.last = null;

>

// methods...

25

DLL nodes in Java

public class DLLNode {

protected Object element;
protected DLLNode pred, succ;

protected DLLNode(Object elem,
DLLNode pred,
DLLNode succ) {

this.element = elem;
this.pred = pred;
this.succ = succ;

26

Deleting a node from a DLL

= Node deletion from a DLL involves changing two links

myDLL

\

= Deletion of the first node or the last node is a special case

= Garbage collection will take care of deleted nodes

27

Other operations on linked lists

"= Most “algorithms” on linked lists—such as insertion, deletion, and
searching—are pretty obvious; you just need to be careful

= Sorting a linked list is just messy, since you can’t directly access the
nth element—you have to count your way through a lot of other
elements

28

Circular Lists

L Circular double-linked list:
= Link last node to the first node, and
= Link first node to the last node

dWe can also build singly-linked circular lists:
= Traverse in forward direction only

d Advantages:
= Continue to traverse even after passing the first or last node
= Visit all elements from any starting point
= Never fall off the end of a list

d Disadvantage: Code must avoid an infinite loop!
2 END.

