Chapter 6

Linked Lists
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Anatomy of a linked list

= A linked list consists of:
A sequence of nodes

myList | &

= Each node contains a value and a link (pointer or reference) to some other node

a | b [e]—{c[®]—{d[®

= The last node contains a null link

* The list may have a header



Singly Linked Lists and Arrays

Singly linked list

Array

Elements are stored in linear
order, accessible with links.
Do not have a fixed size.

Cannot access the previous
element directly.

No binary search.

Elements are stored in linear
order, accessible with an
index.

Have a fixed size.

Can access the previous
element easily.

Binary search.
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More terminology

= A node’s successor is the next node in the sequence
The last node has no successor

= A node’s predecessor is the previous node in the
sequence
The first node has no predecessor

= Alist’s length is the number of elements in it
A list may be empty (contain no elements)



Pointers and references

" |[n Cand C++ we have “pointers,” while in Java we have “references”

These are essentially the same thing

The difference is that C and C++ allow you to modify pointers in arbitrary ways, and to
point to anything

= |nJava, a reference is more of a “black box,” or ADT (Abstract data
type)

Available operations are:
dereference (“follow”)

copy
compare for equality

There are constraints on what kind of thing is referenced: for example,
a reference to an array of int can only refer to an array of int
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Creating references

" The keyword new creates a new object, but also returns
a reference to that object

* For example, Person p = new Person("John")

new Person("John") creates the object and returns a reference
to it
We can assign this reference to p, or use it in other ways



Creating links in Java

myList: i‘

44 ® Y Q7 & T—> 23 &
class Cell { int value;
Cell next;
Cell (intv, Cell n) { // constructor
value = v;
} next = n;

3
Cell temp = new Cell(17, null);

temp = new Cell(23, temp);
temp = new Cell(97, temp);
Cell myList = new Cell(44, temp);




Singly-linked lists

 Here is a singly-linked list (SLL):

myList | &

3 |+—p [e]—c |e]—(

" Each node contains a value and a link to its
successor (the last node has no successor)

" The header points to the first node in the list (or
contains the null link if the list is empty)



Singly-linked lists in Java

public class SLL {
private SLLNode first;

public SLL() {
this.first = null;
b

// methods...

* This class actually describes the
header of a singly-linked list

e However, the entire list is
accessible from this header

e Users can think of the SLL as being
the list

» Users shouldn’t have to worry about
the actual implementation
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SLL nodes in Java

public class SLLNode {
protected Object element;
protected SLLNode succ;

protected SLLNode(Object elem,
SLLNode succ) {

this.element = elem;
this.succ = succ;

11



Creating a simple list

" To create the list ("one", "two", "three"):

SLL numerals = new SLL();
numerals.first =new SLLNode("one",new SLLNode("two",new SLLNode("three", null)));

numerals

one |®7T*two |®T " three| ®
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Traversing a SLL

" The following method traverses a list (and prints its elements):

public void printFirstTolLast() {

for (SLLNode curr = first; curr '= null; curr = curr.succ) {
System.out.print(curr.element + " ");

»
»

= You would write this as an instance method of the SLL class

numerals

one | &7 —*two |® T three| ®
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Traversing a SLL (animation)

curr

numerals \\
o —ftwo [¢+—

one

three| ©
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Inserting a node into a SLL

= There are many ways you might want to insert a new node
into a list:

* Asthe new first element

* Asthe new last element

» Before a given node (specified by a reference)
e After a given node

 Before a given value

* After a given value

= All are possible, but differ in difficulty
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Inserting as a new first element

" This is probably the easiest method to implement
= |nclass SLL (not SLLNode):

void insertAtFront(SLLNode node) {
node.succ = this.first;
this.first = node;

»

" Notice that this method works correctly when inserting
into a previously empty list
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Inserting a node after a given
value

void insertAfter(Object obj, SLLNode node) {
for (SLLNode here = this.first;
here '= null;
here = here.succ) {
if (here.element.equals(obj)) {
node.succ = here.succ;
here.succ = node;
return;
Y/ f
¥y // for

// Couldn't insert--do something reasonable!

17

Algorithms and Data Structures



Inserting after (animation)

numerals

node

25 |®

one

1two

H 7 three| ®

* Find the node you want to insert after
= First, copy the link from the node that's already in the list

= Then, change the link in the node that's already in the list
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Deleting a node from a SLL

= |n order to delete a node from a SLL, you have to change
the link in its predecessor

= This is slightly tricky, because you can’t follow a pointer
backwards

= Deleting the first node in a list is a special case, because
the node’s predecessor is the list header
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Deleting an element from a SLL

» To delete the first element, change the link in the header

numerals | €
NN

one |®T—>two |® 7T three|®

» To delete some other element, change the link in its

predecesso
numerals

one |®F—*two |®T " three| ®

= Deleted nodes will eventually be garbage collected
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Deleting from a SLL

public void delete(SLLNode del) {

SLLNode succ = del.succ;

// If del is first node, change link in header
if (del == first) first = succ;

else { // find predecessor and change its link

SLLNode pred = first;

while (pred.succ != del) pred = pred.succ;
pred.succ = succ;

NnUMera
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Limitations of a singly-linked list

* Insertion at the front is O(1)

* insertion at other positions is O(n)

 Removing a node requires a reference to the previous node
 We can traverse the list only in the forward direction

= How to overcome these limitations?
> Double-linked list
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Doubly-linked lists

1 Here is a doubly-linked list (DLL):

myDLL

\

= Each node contains a value, a link to its successor (if any),
and a link to its predecessor (if any)

= The header points to the first node in the list and to the
last node in the list (or contains null links if the list is

empty)
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DLLs compared to SLLs

= Advantages: " Disadvantages:

 Can be traversed in either * Requires more space
direction (may be essential * List manipulations are
for some programs) slower (because more links

« Some operations, such as must be changed)
deletion and inserting * Greater chance of having
before a node, become bugs (because more links
easier must be manipulated)
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Constructing SLLs and DLLs

public class SLL {

private SLLNode first;

public SLL() {
this.first = null;
b

// methods...

public class DLL {

private DLLNode first;
private DLLNode last;

public DLL() {
this.first = null;
this.last = null;

>

// methods...
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DLL nodes in Java

public class DLLNode {

protected Object element;
protected DLLNode pred, succ;

protected DLLNode(Object elem,
DLLNode pred,
DLLNode succ) {

this.element = elem;
this.pred = pred;
this.succ = succ;
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Deleting a node from a DLL

= Node deletion from a DLL involves changing two links

myDLL

\

= Deletion of the first node or the last node is a special case

= Garbage collection will take care of deleted nodes
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Other operations on linked lists

"= Most “algorithms” on linked lists—such as insertion, deletion, and
searching—are pretty obvious; you just need to be careful

= Sorting a linked list is just messy, since you can’t directly access the
nth element—you have to count your way through a lot of other
elements
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Circular Lists

L Circular double-linked list:
= Link last node to the first node, and
= Link first node to the last node

dWe can also build singly-linked circular lists:
= Traverse in forward direction only

d Advantages:
= Continue to traverse even after passing the first or last node
= Visit all elements from any starting point
= Never fall off the end of a list

d Disadvantage: Code must avoid an infinite loop!
2 END.



