
Chapter 6

Linked Lists

Algorithms and Data Structures 1

Algorithms and Data Structures 2

Anatomy of a linked list
 A linked list consists of:

A sequence of nodes

a b c d

 Each node contains a value and a link (pointer or reference) to some other node

 The last node contains a null link

 The list may have a header

myList

Algorithms and Data Structures 3

Singly Linked Lists and Arrays

Singly linked list Array

Elements are stored in linear

order, accessible with links.

Do not have a fixed size.

Cannot access the previous

element directly.

No binary search.

Elements are stored in linear

order, accessible with an

index.

Have a fixed size.

Can access the previous

element easily.

Binary search.

Algorithms and Data Structures 4

5

More terminology

 A node’s successor is the next node in the sequence
The last node has no successor

 A node’s predecessor is the previous node in the
sequence
The first node has no predecessor

 A list’s length is the number of elements in it
A list may be empty (contain no elements)

Algorithms and Data Structures

6

Pointers and references
 In C and C++ we have “pointers,” while in Java we have “references”

These are essentially the same thing
The difference is that C and C++ allow you to modify pointers in arbitrary ways, and to
point to anything

 In Java, a reference is more of a “black box,” or ADT (Abstract data
type)

Available operations are:
dereference (“follow”)

copy

compare for equality

There are constraints on what kind of thing is referenced: for example,
a reference to an array of int can only refer to an array of int

Algorithms and Data Structures

7

Creating references
 The keyword new creates a new object, but also returns

a reference to that object

 For example, Person p = new Person("John")
new Person("John") creates the object and returns a reference
to it

We can assign this reference to p, or use it in other ways

Algorithms and Data Structures

8

Creating links in Java

 class Cell { int value;
 Cell next;

 Cell (int v, Cell n) { // constructor
 value = v;
 next = n;
}

 }

 Cell temp = new Cell(17, null);

 temp = new Cell(23, temp);

 temp = new Cell(97, temp);

 Cell myList = new Cell(44, temp);

44 97 23 17

myList:

Algorithms and Data Structures

9

Singly-linked lists
 Here is a singly-linked list (SLL):

 Each node contains a value and a link to its
successor (the last node has no successor)

 The header points to the first node in the list (or
contains the null link if the list is empty)

a b c d

myList

Algorithms and Data Structures

10

Singly-linked lists in Java
 public class SLL {

 private SLLNode first;

 public SLL() {

 this.first = null;
}

 // methods...

 }

• This class actually describes the
header of a singly-linked list

• However, the entire list is
accessible from this header

• Users can think of the SLL as being
the list

• Users shouldn’t have to worry about
the actual implementation

Algorithms and Data Structures

11

SLL nodes in Java
 public class SLLNode {

 protected Object element;

 protected SLLNode succ;

 protected SLLNode(Object elem,
 SLLNode succ) {

 this.element = elem;

 this.succ = succ;

 }
}

Algorithms and Data Structures

12

Creating a simple list
 To create the list ("one", "two", "three"):
SLL numerals = new SLL();

numerals.first =new SLLNode("one“,new SLLNode("two“,new SLLNode("three", null)));

three two one

numerals

Algorithms and Data Structures

13

Traversing a SLL

 The following method traverses a list (and prints its elements):
 public void printFirstToLast() {

 for (SLLNode curr = first; curr != null; curr = curr.succ) {

 System.out.print(curr.element + " ");

 }
}

 You would write this as an instance method of the SLL class

Algorithms and Data Structures

three two one

numerals

14

Traversing a SLL (animation)

three two one

numerals

curr

Algorithms and Data Structures

15

Inserting a node into a SLL
 There are many ways you might want to insert a new node

into a list:
• As the new first element

• As the new last element

• Before a given node (specified by a reference)

• After a given node

• Before a given value

• After a given value

 All are possible, but differ in difficulty

Algorithms and Data Structures

16

Inserting as a new first element

 This is probably the easiest method to implement

 In class SLL (not SLLNode):

void insertAtFront(SLLNode node) {
 node.succ = this.first;
 this.first = node;
}

 Notice that this method works correctly when inserting
into a previously empty list

Algorithms and Data Structures

17

Inserting a node after a given
value
void insertAfter(Object obj, SLLNode node) {

 for (SLLNode here = this.first;

 here != null;

 here = here.succ) {

 if (here.element.equals(obj)) {

 node.succ = here.succ;

 here.succ = node;

 return;

 } // if

 } // for

 // Couldn't insert--do something reasonable!

}

Algorithms and Data Structures

18

Inserting after (animation)

three two one

numerals

2.5 node

 Find the node you want to insert after

 First, copy the link from the node that's already in the list

 Then, change the link in the node that's already in the list

Algorithms and Data Structures

19

Deleting a node from a SLL
 In order to delete a node from a SLL, you have to change

the link in its predecessor

 This is slightly tricky, because you can’t follow a pointer
backwards

 Deleting the first node in a list is a special case, because
the node’s predecessor is the list header

Algorithms and Data Structures

20

Deleting an element from a SLL

three two one

numerals

three two one

numerals

 To delete the first element, change the link in the header

 To delete some other element, change the link in its

predecessor

 Deleted nodes will eventually be garbage collected

Algorithms and Data Structures

21

Deleting from a SLL

 public void delete(SLLNode del) {
 SLLNode succ = del.succ;

 // If del is first node, change link in header

 if (del == first) first = succ;

 else { // find predecessor and change its link

 SLLNode pred = first;

 while (pred.succ != del) pred = pred.succ;

 pred.succ = succ;
 }

 }

Algorithms and Data Structures

three two one

numera
ls

22

• Insertion at the front is O(1)
• insertion at other positions is O(n)
• Removing a node requires a reference to the previous node
• We can traverse the list only in the forward direction

 How to overcome these limitations?

 Double-linked list

Limitations of a singly-linked list

Algorithms and Data Structures

23

Doubly-linked lists

 Here is a doubly-linked list (DLL):

 Each node contains a value, a link to its successor (if any),
and a link to its predecessor (if any)

 The header points to the first node in the list and to the
last node in the list (or contains null links if the list is
empty)

myDLL

a b c

Algorithms and Data Structures

24

DLLs compared to SLLs

 Advantages:
• Can be traversed in either

direction (may be essential
for some programs)

• Some operations, such as
deletion and inserting
before a node, become
easier

 Disadvantages:
• Requires more space

• List manipulations are
slower (because more links
must be changed)

• Greater chance of having
bugs (because more links
must be manipulated)

Algorithms and Data Structures

25

Constructing SLLs and DLLs
 public class SLL {

 private SLLNode first;

 public SLL() {

 this.first = null;
}

 // methods...

 }

 public class DLL {

 private DLLNode first;

 private DLLNode last;

 public DLL() {

 this.first = null;

 this.last = null;
}

 // methods...

 }

Algorithms and Data Structures

26

DLL nodes in Java

 public class DLLNode {
 protected Object element;

 protected DLLNode pred, succ;

 protected DLLNode(Object elem,
 DLLNode pred,
 DLLNode succ) {

 this.element = elem;

 this.pred = pred;

 this.succ = succ;

 }
}

Algorithms and Data Structures

27

Deleting a node from a DLL
 Node deletion from a DLL involves changing two links

 Deletion of the first node or the last node is a special case

 Garbage collection will take care of deleted nodes

myDLL

a b c

Algorithms and Data Structures

28

Other operations on linked lists

 Most “algorithms” on linked lists—such as insertion, deletion, and
searching—are pretty obvious; you just need to be careful

 Sorting a linked list is just messy, since you can’t directly access the
nth element—you have to count your way through a lot of other
elements

Algorithms and Data Structures

29

Circular Lists

Circular double-linked list:

 Link last node to the first node, and

 Link first node to the last node

We can also build singly-linked circular lists:

 Traverse in forward direction only

Advantages:

 Continue to traverse even after passing the first or last node

 Visit all elements from any starting point

 Never fall off the end of a list

Disadvantage: Code must avoid an infinite loop!

END. Algorithms and Data Structures

