College of Science and Computer Engineering, Yanbu

CS211 Algorithms & Data Structures

Induction

Fall 1443 - 2021 Dr.Sameer Mabrouk Alrehaili College of Science and Computer Engineering, Yanbu

Contact Information

• Instructor:

- Dr. Sameer M. Alrehaili
- Email: <u>srehaili@taibahu.edu.sa</u>

• Lectures:

- CSNB2 Sun and Tue 09:45 11:25
- ISNB1 Mon and Wed 08:00 09:40
- ISNB2 Mon and Wed 09:45 11:25

• Office hours:

- Monday 11:30 13:30
- Tuesday 11:30 13:30

Course Overview

Having successfully completed this course, the student will be able to:

- Develop an appreciation of the relationship between data structures and algorithms.
- Examine and experiment a variety of techniques for designing algorithms.
 - To help you to estimate the running time.
 - To help you to write an efficient algorithm.
 - Compare the running time for two algorithms
 - To analyse an algorithm
- Select and implement data structures for a given problem.
- Distinguish, differentiate and experiment different searching and sorting algorithms.
- Explore the concept of an abstract data types (ADT) and the tradeoffs between different implementations of ADTs.

Course Description

Data structures and algorithms are fundamental to programming and to understanding computation. The purpose of this module is to provide students with a coherent introduction to techniques for using data structures and commonly used algorithms for solving problems. The course is taught using the Java or Python programming language.

Expectations

- Attend all lectures
- Complete all labs
- Solve given problems
- Submit lab work and assignment through

Learning resources

Textbooks:

Mark A. Weiss, "Data Structures and Algorithm Analysis in Java", 3rd Edition, Addison Wesley, 2011, ISBN 13: 9780-13-257627-7.

References:

hrough Puzzles

- Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein, "Introduction to algorithms", 3rd Edition, MIT Press, 2009, ISBN 978-0-262-53305-8.
- Ryuhei Uehara, "First Course in Algorithms Through Puzzles", Springer, 2019, ISBN 978-981-13-3187-9.
- Adam Drozdek, Data Structures and Algorithms in Java, 4th Edition, Cengage Learning, 2013.

Algorithms & Data Structures CS 211 Topics Covered

Lectures:		Laboratories:	
1. 2.	Introduction to algorithms and data structures Algorithm/complexity analysis	1. 2. 3.	Introductory and problems review Recursion List, linked list
3.	Recursion	4.	Stack, queues
4.	Lists, linked lists	5.	Trees
5.	Stacks, queues	6.	Graph algorithms
6.	Trees (Trees, Sets, Maps, Graphs)	7.	Searching and sorting algorithms.
7.	Graph algorithms (Shortest-path, Dijkstra,)		
8.	Searching and Sorting algorithms.		

Weekly Plan (schedule)

	Week	Date	Торіс	Activity
•	Week#01	29 Aug, 02 Sep	Introduction I	
•	Week #02	05 Sep, 09 Sep	Introduction II	
•	Week#03	12 Sep, 16 Sep	Complexity Analysis I	
•	Week#04	19 Sep, 23 Sep	Complexity Analysis II	Quiz1
•	Week#05	26 Sep, 30 Sep	Arrays & Searching	
•	Week#06	03 Oct, 07 Oct	Sorting	
•	Week#07	10 Oct, 14 Oct	Recursion	Midterm
•	Week#08	17 Oct, 21 Oct	Linked Lists	
•	Week#09	24 Oct, 28 Oct	Stacks	
•	Week#10	31 Oct, 04 Nov	Queues	Quiz2
•	Week#11	07 Nov, 11 Nov	Trees	
	Week#12	14 Nov, 18 Nov	Review	

Grading

 Assignments & Participation 	10%
• Quiz 1 (Week 4)	10%
• Quiz 2 (Week 10)	10%
Midterm (Week 7)	30%
 Final (Week 13) 	40%