
CS211
Algorithms & Data Structures

Lecture 03
1444 - 2022

Dr. Sameer Mabrouk Alrehaili
College of Science and Computer Engineering, Yanbu

Algorithms & Data Structures CS 211
College of Science and Computer Engineering, Yanbu TAIBAH UNIVERSITY

Chapter 2

Algorithm Analysis

• To measure the efficiency of an algorithm using experimental and
theoretical approaches.

• Time and space complexity
• Worst case analysis
• Big-Oh notation
• Primitive operations

Algorithms & Data Structures CS 211
Objectives

● After we covered how to write an algorithm in pseudocode, here we
will cover how to analyse an algorithm.

Algorithms & Data Structures CS 211
Efficiency

process5 2 1 6 0 3 0 1 2 3 5 6

Input Output

• Algorithm analysis is a methodology of measuring the amount of
computational resources that an algorithm requires.

• Algorithm analysis is a methodology of measuring the efficiency of
an algorithm.

• Efficiency = the amount of computational resources that an
algorithm requires.

Algorithms & Data Structures CS 211
Algorithm Analysis

● Most fuel-efficient cars saves your money every time you fill up.
● Most efficient dryer machine will save money on your utility bills.

Algorithms & Data Structures CS 211
Efficiency

• One important factor in developing an algorithm its efficiency.
• Efficiency (or complexity) is a measure of the amount of

computational resources (time and space) that a particular
algorithm consumes when it runs.

• Therefore an algorithm is considered efficient if its resource
consumption (computational cost) is at below some acceptable
level.

• Usually, the efficiency of an algorithm is stated as a function
relating the input length to the number of steps (time complexity) or
storage locations (space complexity).

Algorithms & Data Structures CS 211
Algorithm Efficiency

• There are different kinds of efficiency, such as financial cost, and
use of resources. We will focus on time efficiency.

• Time efficiency: a measure of amount of time for an algorithm to
execute.

• Space efficiency: a measure of the amount of memory needed for
an algorithm to execute.

Algorithms & Data Structures CS 211
Algorithm Efficiency

• It is important to write simple and understandable algorithm.
• While it is important to consider efficiency, it is not necessary to try

and find the most efficient algorithm.
• Very efficient algorithm may be harder to understand.

Algorithms & Data Structures CS 211
Efficiency vs Understandability

• As mentioned before, there are a range of different approaches to
solve a problem. But which one of them is the most efficient
solution?

• How do we measure an algorithm efficiency?
• Algorithms can be analysed in two main ways:

○ Experimental analysis
○ Theoretical analysis (Asymptotic analysis)

Algorithms & Data Structures CS 211
Algorithm Analysis

Algorithms & Data Structures CS 211
Algorithm Analysis Approaches

Experimental Analysis
● Implementing an algorithm and run it

with varying input size.
● Get the actual running time

○ Run the program using a
method like
System.currentTimeMillis() to get an
accurate measure of the actual
running.

● Implementation is difficult and time
consuming

● To compare two algorithms, the
same hardware and software
environments must be used.

Theoretical Analysis
● Count the number of primitive operations
● Get theoretical estimates for the

resources needed.
● Evaluates algorithms in a way that is

independent from the hardware and
software environments.

● This indicates how this number depends
on the size of the input.

● Primitive operations are basic
computations performed by an
algorithm. For example, Addition,
subtraction, multiplication, memory
access, ….etc

● Non-basic operation
○ Sorting, searching, …. etc

public class test{
public static void main(String[] args){

long start = System.currentTimeMillis();
//code should be here
long end = System.currentTimeMillis();
long elapsed = end-start;
System.out.println("Running time is "+ Elapsed + "ms");

}
}

Algorithms & Data Structures CS 211
Example of Experimental Analysis

n Time (ms) on Xeon(R)
E3-1220 v6
3.5 GHz x4 (Quad-Core)

M1 8-core CPU 16-core
Neural Engine, 14-core GPU
3.2 GHz x8 (Octa-Core)

10 0 0

100 2 1

1,000 7 3

10,000 23 12

100,000 121 69

1,000,000 1035 614

10,000,000 10,051 6044

● Primitive operations is the low-level computations

Algorithms & Data Structures CS 211
Primitive operations

operation example cost

Addition a + b 1

Subtraction a - b 1

Multiplication a * b 1

Division a / b 1

Comparing two numbers a < b 1

Assigning a value A←4, a←c 1

Indexing into an array a[0] 1

Calling a method max(A,10) 1

Returning from a method return max 1

Evaluating an expression a←a+1 2

● By inspecting the following pseudocode, we can determine the
maximum number of primitive operations executed, as a function of
the input size. f(n) or T(n)

The running time is T(n) = 1+n+1+2n+2n
 =5n+2 >=O(n)

Algorithms & Data Structures CS 211
Example of Theoretical Analysis

for i←0;i<n;i←i+1 do
Print a[i]

end for

1+(n+1)+2n
2n

● Count the number of primitive operations executed by the following
algorithm, as a function of the input size.

The running time T(n) = 2+1+n+2(n-1)+2(n-1)+2(n-1)+1
=3+n+2n-2+2n-2+2n-2+1=7n-2
=7n-2 >=O(n)

Algorithms & Data Structures CS 211
Counting Primitive Operations

Function max(A, n)
max=<--A[0]
for i←1;i<n;i←i+1 do

If a[i]>max then
Max←a[i]

end if
end for
return max

End max

2
1+n+2(n-1)
2(n-1)
2(n-1)

1

● Count the number of primitive operations executed by the following
algorithm, as a function of the input size.

The running time T(n) = 1+1+n+1+2n+3n+1
=6n+4>=O(n)

Algorithms & Data Structures CS 211
Counting Primitive Operations

Function multiply(A, n)
P←1
for i←0;i<n;i←i+1 do

P←P*A[i]
end for
return P

End multiply

1
1+
(n+1)+2n
3n
1

● Count the number of primitive operations executed by the following
algorithm, as a function of the input size.

The running time T(n) = 1+1+n+1+2n+3n+2
=6n+5>=O(n)

Algorithms & Data Structures CS 211
Counting Primitive Operations

Function average(A, n)
Avg←0
for i←0;i<n;i←i+1 do

Avg←Avg + A[i]
end for
return Avg/n

End average

1
1+
(n+1)+2n
3n

2

● There are three cases to analyse the complexity of an algorithm:

Let’s assume you want to find the element that hold 1
● Best case (very rarely used)

● Average case (Rarely used)

● Worst case (Mostly used)

● Average case time is often difficult to determine.
● We focus on the worst case running time.

Algorithms & Data Structures CS 211
Analysis Types

1 0 2 3 4 5

4 2 1 5 0 3

4 2 3 5 0 1

● we shouldn’t really care about the exact number of operations that
are performed; instead, we should care about how the number of
operations relates to the problem size.

● The fastest algorithm for 100 items may not be the fastest for
10,000 items.

● The running time of an algorithm typically grows with the input size.
● Algorithm’s growth rate is a measure of how quickly the time of

an algorithm grows as a function of problem size.
● To express the time complexity of an algorithm, we use something

called the “Big O notation”. The Big O notation is a language we
use to describe the time complexity of an algorithm. It’s how
we compare the efficiency of different approaches to a problem,
and helps us to make decisions.

Algorithms & Data Structures CS 211
Running time

● Big-O is the shorthand used to classify the time complexity of
algorithms.

● It has a formal mathematical definition, but you just need to know
how to classify algorithms into different Big-O categories.

Algorithms & Data Structures CS 211
Big-O

O(1) Constant time

O(log n) Logarithmic time Runtime grows logarithmically in proportion to
n.

O(n) Linear time It grows linearly as input size increases.

O(n log n) Linearithmic time or log linear

O(n^3) Cubic time

O(n^2) Quadratic time

Q(2^n) Exponential time

O(n!) Factorial time

Algorithms & Data Structures CS 211
Big-O categories

Algorithms & Data Structures CS 211
Primitive Operations

simple statement takes O(1)
time.

int y= n + 25; O(1)

Worst case O(n) if it in the loop,
best case O(1)

if(n> 100)
{
…
}else{
..
..
}

O(1)

For loop takes n time to
complete

for(int i=0;i<n;i++)
{
..
}

O(n)

While loop takes n time int i=0;
while(i<n)
{
..
i++;
}

O(n)

Algorithms & Data Structures CS 211
Primitive Operations

Loop takes n time and increases
or decreases by a constant

for(int i = 0; i < n; i+=5)
 sum++;

for(int i = n; i > 0; i-=5)
 sum++;

O(n)

Loop takes n time and increases
or decreases by a multiple

for(int i = 1; i < =n; i*=2)
 sum++;

for(int i = n; i > 0; i/=2)
 sum++;

O(log(n))

Nested loops contain size n and
m

for(int i=0;i<n;i++)
{
 for(int i=0;i<m;i++){
 ..
 ..
 }
}

O(nm)

Algorithms & Data Structures CS 211
Primitive Operations

First loop runs n times and the
inner loop runs log(n) times or
vice versa

for(int i=0;i<n;i++)
{
 for(int j=1;i<=n;j*=4){
 ..
 ..
 }
}

O(n*log(n))

First loop runs n^2 times and the
inner loop runs n times or vice
versa

for(int j=0;j<n*n;j++)
{
 for(int i=0;i<n;i++){
 ..
 ..
 }
}

O(n^3)

First loop runs n times and the
inner loop runs n^2 times and
the third loop runs n^2

for(int i = 0; i < n; i++)
 for(int j = 0; j < n * n; j++)
 for(int k = 0; k < j; k++)
 sum++;

O(n^5)

