
Algorithm Analysis tools



Constant function
❑ For a given argument/variable n, the function 

always returns a constant value
❑ It is independent of variable n
❑ It is commonly used to approximate the total 

number of primitive operations in an algorithm
❑ Most common constant function is g(n) = 1
❑ Any constant value c can be expressed as 

constant function f(n) = c.g(1)



Linear function
❑ For a given argument/variable n, the function 

always returns n
❑  This function arises in algorithm analysis any 

time we have to do a single basic operation over 
each of n elements 
▪ For example, finding min/max value in a list 

of values
▪ Time complexity of linear/sequential search 

algorithm is linear



Quadratic function
❑ For a given argument/variable n, the function 

always returns square of n
❑  This function arises in algorithm analysis any 

time we use nested loops
▪ The outer loop performs primitive operations in 

linear time; for each iteration, the inner loop also 
perform primitive operations in linear time

▪ For example, sorting an array in 
ascending/descending order using Bubble Sort 
(more later on)

▪ Time complexity of most algorithms is quadratic



Cubic function
❑ For a given argument/variable n, the function 

always returns n x n x n
❑  This function is very rarely used in algorithm 

analysis
▪ Rather, a more general class “polynomial” is 

often used
o f(n) = a0 + a1n + a2n

2 + a3n
3 + … + adn

d



Logarithmic function
❑ For a given argument/variable n, the function 

always returns logarithmic value of n
❑ Generally, it is written as f(n) = logbn, where b 

is base which is often 2
❑  This function is also very common in 

algorithm analysis
❑  We normally approximate the logbn to a value 

x. x is number of times n is divided by b until 
the division results in a number less than or 
equal to 1

▪  log327 is 3, since 27/3/3/3 = 1. 
▪  log464 is 3, since 64/4/4/4 = 1
▪  log212 is 4, since 12/2/2/2/2 = 0.75 ≤ 1



Log linear function
❑ For a given argument/variable n, the function 

always returns n log n
❑ Generally, it is written as f(n) =  n logbn, where 

b is base which is often 2
❑  This function is also common in algorithm 

analysis
❑  Growth rate of log linear function is faster as 

compared to linear and log functions



Exponential function
❑ For a given argument/variable n, the function 

always returns bn, where b is base and n is 
power (exponent)

❑ This function is also common in algorithm 
analysis

❑  Growth rate of exponential function is faster 
than all other functions



Algorithmic runtime
❑  Worst-case running time

▪ measures the maximum number of primitive operations 
executed
▪ The worst case can occur fairly often
o  e.g. in searching a database for a particular piece of information

❑  Best-case running time
▪ measures the minimum number of primitive operations 

executed
o Finding a value in a list, where the value is at the first position
o Sorting a list of values, where values are already in desired order

❑  Average-case running time
▪ the  efficiency averaged on all possible inputs
▪ maybe difficult to define what “average” means



Complexity classes
❑ Suppose the execution time of algorithm A is a 

quadratic function of n (i.e. an2 + bn + c)
❑ Suppose the execution time of algorithm B is a 

linear function of n (i.e. an + b)
❑ Suppose the execution time of algorithm C is a 

an exponential function of n (i.e. a2n)
❑ For large problems higher order terms dominate 

the rest
❑ These three algorithms belong to three different 

“complexity classes”



Big-O and function growth rate
❑  We use a convention O-notation (also called 

Big-Oh) to represent different complexity classes
❑  The statement “f(n) is O(g(n))” means that the 

growth rate of f(n) is no more than the growth rate 
of g(n)

❑  g(n) is an upper bound on f(n), i.e. maximum 
number of primitive operations

❑  We can use the big-O notation to rank functions 
according to their growth rate
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Big-O: functions ranking

• O(1) constant time
• O(log n) log time
• O(n) linear time
• O(n log n) log linear time
• O(n2) quadratic time
• O(n3) cubic time
• O(2n) exponential time

BETTER

WORSE



Simplifications
❑  Keep just one term

▪  the fastest growing term (dominates the runtime)
❑  No constant coefficients are kept

▪ Constant coefficients affected by machines, 
languages, etc

❑  Asymptotic behavior  (as n gets large) is determined 
entirely by the dominating term
▪  Example: T(n) = 10 n3 + n2 + 40n + 800

o  If n = 1,000, then  T(n) = 10,001,040,800
o  error is 0.01% if we drop all but the  n3  (the 

dominating) term



Big Oh: some examples

❑  n3 – 3n = O(n3)
❑  1 + 4n = O(n)
❑  7n2 + 10n + 3 = O(n2)
❑  2n + 10n + 3 = O(2n)

❑ Moreover
❑  7n2 + 10n + 3 = O(n3)
❑  7n2 + 10n + 3 = O(2n)
❑  7n2 + 10n + 3  is NOT  O(n)



Big Oh: some examples

The difference is a tight bound and non-tight bound:

❑7n2 + 10n + 3 = O(n2)  is called tight bound

❑7n2 + 10n + 3 = O(n3) is called non-tight bound



Practice

❑  Express the following functions in terms of Big-O 
notation with a tight bound (a, b and c are constants)
1. f(n) = an2 + bn + c
2. f(n) = 2n + n log n + c
3. f(n) = n log n + b log n + c
4. f(n) = 2n + n log n + 3n 

5. f(n) = 2n + n log n + 100 log n



Summary & Examples (1)

❑  four interesting points:
1. Resources: number of primitive 

instructions: time
2. Complexity is function of inputs 

(n)
3. We will focus on the great value 

of n, Big-O capture the notion of 
the asymptotic value of the 
number of instructions 

4. Worst case (the maximum number of 
primitive instructions)



Summary & Examples (2)



❑  Problem 1: prepare a sport competition:
❑  n: number of remaining days to competition

Summary & Examples (3)



❑  Problem 1: prepare a sport competition:
❑  n: number of remaining days to competition

Summary & Examples (4)



❑  Problem 1: prepare a sport competition:
❑  n: number of remaining days to competition

Summary & Examples (5)



❑  Problem 2: research (x , L): L[1], L[2],…… L[n] 
❑  n: number of elements

Summary & Examples (6)



❑  Problem 2: research (x , L): L[1], L[2],…… L[n] 
❑  n: number of elements

Summary & Examples (7)

Important:
▪ Count and increment is a fairly simple technique, it allows to get an idea of an algorithm.
▪ For a complex algorithm it is not always easy to count, but it can provide an interesting reflection track


