
Algorithm Analysis tools

Constant function
❑ For a given argument/variable n, the function

always returns a constant value
❑ It is independent of variable n
❑ It is commonly used to approximate the total

number of primitive operations in an algorithm
❑ Most common constant function is g(n) = 1
❑ Any constant value c can be expressed as

constant function f(n) = c.g(1)

Linear function
❑ For a given argument/variable n, the function

always returns n
❑ This function arises in algorithm analysis any

time we have to do a single basic operation over
each of n elements
▪ For example, finding min/max value in a list

of values
▪ Time complexity of linear/sequential search

algorithm is linear

Quadratic function
❑ For a given argument/variable n, the function

always returns square of n
❑ This function arises in algorithm analysis any

time we use nested loops
▪ The outer loop performs primitive operations in

linear time; for each iteration, the inner loop also
perform primitive operations in linear time

▪ For example, sorting an array in
ascending/descending order using Bubble Sort
(more later on)

▪ Time complexity of most algorithms is quadratic

Cubic function
❑ For a given argument/variable n, the function

always returns n x n x n
❑ This function is very rarely used in algorithm

analysis
▪ Rather, a more general class “polynomial” is

often used
o f(n) = a0 + a1n + a2n

2 + a3n
3 + … + adn

d

Logarithmic function
❑ For a given argument/variable n, the function

always returns logarithmic value of n
❑ Generally, it is written as f(n) = logbn, where b

is base which is often 2
❑ This function is also very common in

algorithm analysis
❑ We normally approximate the logbn to a value

x. x is number of times n is divided by b until
the division results in a number less than or
equal to 1

▪ log327 is 3, since 27/3/3/3 = 1.
▪ log464 is 3, since 64/4/4/4 = 1
▪ log212 is 4, since 12/2/2/2/2 = 0.75 ≤ 1

Log linear function
❑ For a given argument/variable n, the function

always returns n log n
❑ Generally, it is written as f(n) = n logbn, where

b is base which is often 2
❑ This function is also common in algorithm

analysis
❑ Growth rate of log linear function is faster as

compared to linear and log functions

Exponential function
❑ For a given argument/variable n, the function

always returns bn, where b is base and n is
power (exponent)

❑ This function is also common in algorithm
analysis

❑ Growth rate of exponential function is faster
than all other functions

Algorithmic runtime
❑ Worst-case running time

▪ measures the maximum number of primitive operations
executed
▪ The worst case can occur fairly often
o e.g. in searching a database for a particular piece of information

❑ Best-case running time
▪ measures the minimum number of primitive operations

executed
o Finding a value in a list, where the value is at the first position
o Sorting a list of values, where values are already in desired order

❑ Average-case running time
▪ the efficiency averaged on all possible inputs
▪ maybe difficult to define what “average” means

Complexity classes
❑ Suppose the execution time of algorithm A is a

quadratic function of n (i.e. an2 + bn + c)
❑ Suppose the execution time of algorithm B is a

linear function of n (i.e. an + b)
❑ Suppose the execution time of algorithm C is a

an exponential function of n (i.e. a2n)
❑ For large problems higher order terms dominate

the rest
❑ These three algorithms belong to three different

“complexity classes”

Big-O and function growth rate
❑ We use a convention O-notation (also called

Big-Oh) to represent different complexity classes
❑ The statement “f(n) is O(g(n))” means that the

growth rate of f(n) is no more than the growth rate
of g(n)

❑ g(n) is an upper bound on f(n), i.e. maximum
number of primitive operations

❑ We can use the big-O notation to rank functions
according to their growth rate

12

Big-O: functions ranking

• O(1) constant time
• O(log n) log time
• O(n) linear time
• O(n log n) log linear time
• O(n2) quadratic time
• O(n3) cubic time
• O(2n) exponential time

BETTER

WORSE

Simplifications
❑ Keep just one term

▪ the fastest growing term (dominates the runtime)
❑ No constant coefficients are kept

▪ Constant coefficients affected by machines,
languages, etc

❑ Asymptotic behavior (as n gets large) is determined
entirely by the dominating term
▪ Example: T(n) = 10 n3 + n2 + 40n + 800

o If n = 1,000, then T(n) = 10,001,040,800
o error is 0.01% if we drop all but the n3 (the

dominating) term

Big Oh: some examples

❑ n3 – 3n = O(n3)
❑ 1 + 4n = O(n)
❑ 7n2 + 10n + 3 = O(n2)
❑ 2n + 10n + 3 = O(2n)

❑ Moreover
❑ 7n2 + 10n + 3 = O(n3)
❑ 7n2 + 10n + 3 = O(2n)
❑ 7n2 + 10n + 3 is NOT O(n)

Big Oh: some examples

The difference is a tight bound and non-tight bound:

❑7n2 + 10n + 3 = O(n2) is called tight bound

❑7n2 + 10n + 3 = O(n3) is called non-tight bound

Practice

❑ Express the following functions in terms of Big-O
notation with a tight bound (a, b and c are constants)
1. f(n) = an2 + bn + c
2. f(n) = 2n + n log n + c
3. f(n) = n log n + b log n + c
4. f(n) = 2n + n log n + 3n

5. f(n) = 2n + n log n + 100 log n

Summary & Examples (1)

❑ four interesting points:
1. Resources: number of primitive

instructions: time
2. Complexity is function of inputs

(n)
3. We will focus on the great value

of n, Big-O capture the notion of
the asymptotic value of the
number of instructions

4. Worst case (the maximum number of
primitive instructions)

Summary & Examples (2)

❑ Problem 1: prepare a sport competition:
❑ n: number of remaining days to competition

Summary & Examples (3)

❑ Problem 1: prepare a sport competition:
❑ n: number of remaining days to competition

Summary & Examples (4)

❑ Problem 1: prepare a sport competition:
❑ n: number of remaining days to competition

Summary & Examples (5)

❑ Problem 2: research (x , L): L[1], L[2],…… L[n]
❑ n: number of elements

Summary & Examples (6)

❑ Problem 2: research (x , L): L[1], L[2],…… L[n]
❑ n: number of elements

Summary & Examples (7)

Important:
▪ Count and increment is a fairly simple technique, it allows to get an idea of an algorithm.
▪ For a complex algorithm it is not always easy to count, but it can provide an interesting reflection track

