
Arrays & Searching Algorithms

Data Structures
❑ Data structure

▪ A particular way of storing and organising data in a
computer so that it can be used efficiently

❑ Types of data structures
▪ Based on memory allocation

o Static (or fixed sized) data structures (Arrays)
o Dynamic data structures (Linked lists)

▪ Based on representation
o Linear (Arrays/linked lists)
o Non-linear (Trees/graphs)

Array: motivation
❑ You want to store 5 numbers in a computer

▪ Define 5 variables, e.g. num1, num2, ..., num5
❑ What, if you want to store 1000 numbers?

▪ Defining 1000 variables is a pity!
▪ Requires much programming effort

❑ Any better solution?
▪ Yes, some structured data type

o Array is one of the most common structured data types
o Saves a lot of programming effort (cf. 1000 variable names)

What is an Array?
❑ A collection of data elements in which

▪ all elements are of the same data type, hence
homogeneous data
o An array of students’ marks
o An array of students’ names
o An array of objects (OOP perspective!)

▪ elements (or their references) are stored at
contiguous/ consecutive memory locations

❑ Array is a static data structure
▪ An array cannot grow or shrink during program
execution – its size is fixed

Basic concepts
❑ Array name (data)
❑ Index/subscript (0...9)
❑ The slots are numbered sequentially

starting at zero (Java, C++)
❑ If there are N slots in an array, the

index will be 0 through N-1
▪ Array length = N = 10
▪ Array size = N x Size of an element = 40

❑ Direct access to an element

Homogeneity
❑ All elements in the array must have the same data

type
Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Index:

Value: 5.5 10.2 18.5 45.6 60.5

0 1 2 43

Index:

Value: ‘A’ 10.2 55 ‘X’ 60.5

0 1 2 43

Not an array

Contiguous Memory
❑ Array elements are stored at contiguous memory

locations

❑ No empty segment in between values (3 & 5 are
empty – not allowed)

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Index:

Value: 5 10 18 45 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Using Arrays
❑ Array_name[index]
❑ For example, in Java

▪ System.out.println(data[4]) will display 0

▪ data[3] = 99 will replace -3 with 99

Some more concepts
 data[-1] always illegal
data[10] illegal (10 > upper bound)
data[1.5] always illegal
data[0] always OK
data[9] OK

Q. What will be the output of?
1.data[5] + 10
2.data[3] = data[3] + 10

Array’s Dimensionality
❑ One dimensional (just a linear list)

▪ e.g.,

▪ Only one subscript is required to access an individual
element

❑ Two dimensional (matrix/table)

▪ e.g., 2 x 4 matrix (2 rows, 4 columns)

5 10 18 30 45 50 60 65 70 80

Col 0 Col 1 Col 2 Col 3
Row 0 20 25 60 40
Row 1 30 15 70 90

Two dimensional Arrays
❑ Let, the name of the two dimensional array is M

❑ Two indices/subscripts are required (row, column)
❑ First element is at row 0, column 0

▪ M0,0
or M(0, 0) or M[0][0] (more common)

❑ What is: M[1][2]? M[3][4]?

20 25 60 40
30 15 70 90

Array Operations (1)
❑ Indexing: inspect or update an element using

its index. Performance is very fast O(1)
randomNumber = numbers[5];
numbers[20000] = 100;

❑ Insertion: add an element at certain index
– Start: very slow O(n) because of shift
– End : very fast O(1) because no need to shift

❑ Removal: remove an element at certain index
– Start: very slow O(n) because of shift
– End : very fast O(1) because no need to shift

Array Operations (2)
❑ Search: performance depends on algorithm

1) Linear: slow O(n) 2) binary : O(log n)
❑ Sort: performance depends on algorithm

1) Bubble: slow O(n2) 2) Selection: slow O(n2)
3) Insertion: slow O(n2) 4)Merge : O (n log n)

One Dimensional Arrays in Java

❑ To declare an array follow the type with (empty) []s
int[] grade; //or
int grade[]; //both declare an int array

❑ In Java arrays are objects so must be created with the new

keyword

▪ To create an array of ten integers:
int[] grade = new int[10];
Note that the array size has to be specified, although it can be

specified with a variable at run-time

Arrays in Java
❑ When the array is created memory is reserved for its contents

❑ Initialization lists can be used to specify the initial values of an

array, in which case the new operator is not used

int[] grade = {87, 93, 35}; //array of 3 ints

❑To find the length of an array use its .length property

int numGrades = grade.length; //note: not .length()!!

Searching Algorithms (1)
❑ Search for a target (key) in the search space
❑ Search space examples are:

▪ All students in the class
▪ All numbers in a given list

❑ One of the two possible outcomes
▪ Target is found (success)
▪ Target is not found (failure)

Searching Algorithms (2)

20 40 10 30 60

 Target = 30 (success or failure?)
 Target = 45 (success or failure?)
 Search strategy?
 List Size = N = 5
 Min index = 0
 Max index = 4 (N - 1)

0 1 2 3 4Index:

Value:

Sequential Search (1)

❑ Search in a sequential order
❑ Termination condition

▪ Target is found (success)
▪ List of elements is exhausted (failure)

Sequential Search (2)

20 40 10 30 60

Target = 30
Step 1: Compare 30 with value at index 0
Step 2: Compare 30 with value at index 1
Step 3: Compare 30 with value at index 2
Step 4: Compare 30 with value at index 3 (success)

0 1 2 3 4Index:

Value:

Sequential Search (3)

20 40 10 30 60

Target = 45
Step 1: Compare 45 with value at index 0
Step 2: Compare 45 with value at index 1
Step 3: Compare 45 with value at index 2
Step 4: Compare 45 with value at index 3
Step 5: Compare 45 with value at index 4
Failure

0 1 2 3 4Index:

Value:

Sequential Search Algorithm (4)

Given: A list of N elements, and the target
1. index 🡺 0
2. Repeat steps 3 to 5

3. Compare target with list[index]
4. if target = list[index] then

return index // success
else if index >= N - 1

return -1 // failure
5. index 🡺 index + 1

Binary Search (1)

❑ Search through a sorted list of items
▪ Sorted list is a pre-condition for Binary Search!

❑ Repeatedly divides the search space (list) into
two

❑ Divide-and-conquer approach

Binary Search: An Example (Key ∈ List) (2)

 Target (Key) = 30

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

First iteration: whole list (search space), compare with mid value
Low Index (LI) = 0; High Index (HI) = 9
Choose element with index (0 + 9) / 2 = 4
Compare value at index 4 (45) with the key (30)
30 is less than 45, so the target must be in the lower half of the
list

Second Iteration: Lookup in the reduced search space

Low Index (LI) = 0; High Index (HI) = (4 - 1) = 3
Choose element with index (0 + 3) / 2 = 1
Compare value at index 1 (10) with the key (30)
30 is greater than 10, so the target must be in the higher
half of the (reduced) list

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Binary Search: An Example (Key ∈ List) (3)

Third Iteration: Lookup in the further reduced search space

Low Index (LI) = 1 + 1 = 2; High Index (HI) = 3
Choose element with index (2 + 3) / 2 = 2
Compare value at index 2 (18) with the key (30)
30 is greater than 18, so the target must be in the higher
half of the (reduced) list

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Binary Search: An Example (Key ∈ List) (4)

Fourth Iteration: Lookup in the further reduced search space

Low Index (LI) = 2 + 1 = 3; High Index (HI) = 3
Choose element with index (3 + 3) / 2 = 3
Compare value at index 3 (30) with the key (30)
Key is found at index 3

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Binary Search: An Example (Key ∈ List) (5)

Binary Search: An Example (Key ∉ List) (6)

 Target (Key) = 40

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

First iteration: Lookup in the whole list (search space)
Low Index (LI) = 0; High Index (HI) = 9
Choose element with index (0 + 9) / 2 = 4
Compare value at index 4 (45) with the key (40)
40 is less than 45, so the target must be in the lower half of
the list

Second Iteration: Lookup in the reduced search space

Low Index (LI) = 0; High Index (HI) = (4 - 1) = 3
Choose element with index (0 + 3) / 2 = 1
Compare value at index 1 (10) with the key (40)
40 is greater than 10, so the target must be in the higher
half of the (reduced) list

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Binary Search: An Example (Key ∉ List) (7)

Third Iteration: Lookup in the further reduced search space

Low Index (LI) = 1 + 1 = 2; High Index (HI) = 3
Choose element with index (2 + 3) / 2 = 2
Compare value at index 2 (18) with the key (40)
40 is greater than 18, so the target must be in the higher
half of the (reduced) list

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Binary Search: An Example (Key ∉ List) (8)

Fourth Iteration: Lookup in the further reduced search space

Low Index (LI) = 2 + 1 = 3; High Index (HI) = 3
Choose element with index (3 + 3) / 2 = 3
Compare value at index 3 (30) with the key (40)
40 is greater than 30, so the target must be in the higher
half of the (reduced) list

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Binary Search: An Example (Key ∉ List) (9)

Fifth Iteration: Lookup in the further reduced search space

Low Index (LI) = 3 + 1 = 4; High Index (HI) = 3
Since LI > HI, Key does not exist in the list
Stop; Key is not found

Index:

Value: 5 10 18 30 45 50 60 65 70 80

0 1 2 3 4 5 6 7 8 9

Binary Search: An Example (Key ∉ List) (10)

Binary Search Algorithm: Informal (11)

❑ Middle 🡺 (LI + HI) / 2
❑ One of the three possibilities

▪ Key is equal to List[Middle]
o success and stop

▪ Key is less than List[Middle]
o Key should be in the left half of List, or it does not exist

▪ Key is greater than List[Middle]
o Key should be in the right half of List, or it does not exist

❑ Termination Condition
▪ List[Middle] is equal to Key (success) OR LI > HI
(Failure)

Binary Search Algorithm (12)

❑ Input: Key, List
❑ Initialisation: LI 🡺 0, HI 🡺 SizeOf(List) – 1
❑ Repeat steps 1 and 2 until LI > HI

1. Mid 🡺 (LI + HI) / 2
2. If List[Mid] = Key then

Return Mid // success
Else If Key < List[Mid] then

HI 🡺 Mid – 1
Else

LI 🡺 Mid + 1

❑Return -1 // failure

Search Algorithms:Time Complexity

❑ Time complexity of Sequential Search algorithm:
▪ Best-case : O(1) comparison

o target is found immediately at the first location
▪ Worst-case: O(n) comparisons

o Target is not found
▪ Average-case: O(n) comparisons

o Target is found somewhere in the middle
❑ Time complexity of Binary Search algorithm:

 O(log(n)) 🡺 This is worst-case

