
Recursion



Recursion: Basic idea
❑  We have a bigger problem whose solution is 

difficult to find 
❑  We divide/decompose the problem into smaller 

(sub) problems
▪  Keep on decomposing until we reach to the smallest 

sub-problem (base case) for which a solution is 
known or easy to find

▪  Then go back in reverse order and build upon the 
solutions of the sub-problems

❑  Recursion is applied when the solution of a problem 
depends on the solutions to smaller instances of the same 
problem





Example 1: Factorial
❑  A function which calls itself

int factorial ( int n ) {
   if ( n == 0) // base case
      return 1;
   else // general/ recursive case
      return n * factorial ( n - 1 );
}



Finding a recursive solution
❑  Each successive recursive call should bring you 

closer to a situation in which the answer is 
known (cf. n-1 in the previous slide)

❑  A case for which the answer is known (and can 
be expressed without recursion) is called a base 
case  

❑  Each recursive algorithm must have at least one 
base case, as well as the general recursive case



❑The factorial of a positive integer n, denoted n!, is defined as the 
product of the integers from 1 to n. For example, 4! = 4·3·2·1 = 24.



Recursion in Action: factorial(n)

factorial (5) = 5 x factorial (4)

= 5 x (4 x factorial (3))

= 5 x (4 x (3 x factorial (2)))

= 5 x (4 x (3 x (2 x factorial (1))))

= 5 x (4 x (3 x (2 x (1 x factorial (0)))))

Base case arrived
Some concept 
from elementary 
maths: Solve the 
inner-most 
bracket, first, and 
then go outward

= 5 x (4 x (3 x (2 x (1 x 1))))

= 5 x (4 x (3 x (2 x 1)))
= 5 x (4 x (3 x 2))

= 5 x (4 x 6)

= 5 x 24

= 120



Recursion vs. Iteration: Computing N!

❑ The factorial of a positive integer n, denoted n!, is 
defined as the product of the integers from 1 to n. For 
example, 4! = 4·3·2·1 = 24.
▪  Iterative Solution

▪  Recursive Solution



Recursion: Do we really need it?
❑  In some programming languages recursion is 

imperative
▪  For example, in declarative/logic languages (LISP, 

Prolog etc.)
▪  Variables can’t be updated more than once, so no 

looping
▪  Heavy backtracking 



Recursion in Action: factorial(n)

factorial (5) = 5 x factorial (4)

= 5 x (4 x factorial (3))

= 5 x (4 x (3 x factorial (2)))

= 5 x (4 x (3 x (2 x factorial (1))))

= 5 x (4 x (3 x (2 x (1 x factorial (0)))))

Base case 
arrived
Some concept 
from elementary 
maths: Solve the 
inner-most 
bracket, first, and 
then go outward

= 5 x (4 x (3 x (2 x (1 x 1))))

= 5 x (4 x (3 x (2 x 1)))
= 5 x (4 x (3 x 2))

= 5 x (4 x 6)

= 5 x 24

= 120



How to write a recursive function?
❑  Determine the size factor (e.g. n in factorial(n))
❑  Determine the base case(s) 

▪ the one for which you know the answer (e.g. 0! = 1)
❑  Determine the general case(s) 

▪ the one where the problem is expressed as a smaller 
version of itself (must converge to base case)

❑  Verify the algorithm 
▪ use the "Three-Question-Method” – next slide



Linear Recursion

❑  The simplest form of recursion is linear 
recursion, where a method is defined so that it 
makes at most one recursive call each time it is 
invoked 

❑  This type of recursion is useful when we view 
an algorithmic problem in terms of a first or 
last element plus a remaining set that has the 
same structure as the original set



Example 2: Summing the Elements of an Array

❑ We can solve this summation problem using linear 
recursion by observing that the sum of all n integers in 
an array A is: 
▪ Equal to A[0], if n = 1(The array has one element), or
▪ The sum of the first n − 1 integers in A plus the last element 

int LinearSum(int A[], n){

if n = 1 then 

return A[0];  // base case

else

return A[n-1] + LinearSum(A, n-1)

}



Analyzing Recursive Algorithms using 
Recursion Traces

 

❑  Recursion trace for an execution of LinearSum(A,n) with input parameters A 
= [4,3,6,2,5] and n = 5



Linear recursion: Reversing an Array

❑  Swap 1st and last elements, 2nd and second to last, 3rd 
and third to last, and so on

❑  If an array contains only one element no need to 
swap (Base case)

❑  Update i and j in such a way that they converge to 
the base case (i = j)
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Example 3: Reversing an Array

void reverseArray(int A[], i, j){

if (i < j){

int temp = A[i];

A[i] = A[j];

A[j] = temp;

reverseArray(A, i+1, j-1)

}

// in base case, do nothing

}



Linear recursion: run-time analysis
❑  Time complexity of linear recursion is 

proportional  to the problem size
▪  Normally, it is equal to the number of times the 

function calls itself 

❑  In terms of Big-O notation time complexity of a 
linear recursive function/algorithm is O(n) 


