
Recursion

Recursion: Basic idea
❑ We have a bigger problem whose solution is

difficult to find
❑ We divide/decompose the problem into smaller

(sub) problems
▪ Keep on decomposing until we reach to the smallest

sub-problem (base case) for which a solution is
known or easy to find

▪ Then go back in reverse order and build upon the
solutions of the sub-problems

❑ Recursion is applied when the solution of a problem
depends on the solutions to smaller instances of the same
problem

Example 1: Factorial
❑ A function which calls itself

int factorial (int n) {
 if (n == 0) // base case
 return 1;
 else // general/ recursive case
 return n * factorial (n - 1);
}

Finding a recursive solution
❑ Each successive recursive call should bring you

closer to a situation in which the answer is
known (cf. n-1 in the previous slide)

❑ A case for which the answer is known (and can
be expressed without recursion) is called a base
case

❑ Each recursive algorithm must have at least one
base case, as well as the general recursive case

❑The factorial of a positive integer n, denoted n!, is defined as the
product of the integers from 1 to n. For example, 4! = 4·3·2·1 = 24.

Recursion in Action: factorial(n)

factorial (5) = 5 x factorial (4)

= 5 x (4 x factorial (3))

= 5 x (4 x (3 x factorial (2)))

= 5 x (4 x (3 x (2 x factorial (1))))

= 5 x (4 x (3 x (2 x (1 x factorial (0)))))

Base case arrived
Some concept
from elementary
maths: Solve the
inner-most
bracket, first, and
then go outward

= 5 x (4 x (3 x (2 x (1 x 1))))

= 5 x (4 x (3 x (2 x 1)))
= 5 x (4 x (3 x 2))

= 5 x (4 x 6)

= 5 x 24

= 120

Recursion vs. Iteration: Computing N!

❑ The factorial of a positive integer n, denoted n!, is
defined as the product of the integers from 1 to n. For
example, 4! = 4·3·2·1 = 24.
▪ Iterative Solution

▪ Recursive Solution

Recursion: Do we really need it?
❑ In some programming languages recursion is

imperative
▪ For example, in declarative/logic languages (LISP,

Prolog etc.)
▪ Variables can’t be updated more than once, so no

looping
▪ Heavy backtracking

Recursion in Action: factorial(n)

factorial (5) = 5 x factorial (4)

= 5 x (4 x factorial (3))

= 5 x (4 x (3 x factorial (2)))

= 5 x (4 x (3 x (2 x factorial (1))))

= 5 x (4 x (3 x (2 x (1 x factorial (0)))))

Base case
arrived
Some concept
from elementary
maths: Solve the
inner-most
bracket, first, and
then go outward

= 5 x (4 x (3 x (2 x (1 x 1))))

= 5 x (4 x (3 x (2 x 1)))
= 5 x (4 x (3 x 2))

= 5 x (4 x 6)

= 5 x 24

= 120

How to write a recursive function?
❑ Determine the size factor (e.g. n in factorial(n))
❑ Determine the base case(s)

▪ the one for which you know the answer (e.g. 0! = 1)
❑ Determine the general case(s)

▪ the one where the problem is expressed as a smaller
version of itself (must converge to base case)

❑ Verify the algorithm
▪ use the "Three-Question-Method” – next slide

Linear Recursion

❑ The simplest form of recursion is linear
recursion, where a method is defined so that it
makes at most one recursive call each time it is
invoked

❑ This type of recursion is useful when we view
an algorithmic problem in terms of a first or
last element plus a remaining set that has the
same structure as the original set

Example 2: Summing the Elements of an Array

❑ We can solve this summation problem using linear
recursion by observing that the sum of all n integers in
an array A is:
▪ Equal to A[0], if n = 1(The array has one element), or
▪ The sum of the first n − 1 integers in A plus the last element

int LinearSum(int A[], n){

if n = 1 then

return A[0]; // base case

else

return A[n-1] + LinearSum(A, n-1)

}

Analyzing Recursive Algorithms using
Recursion Traces

❑ Recursion trace for an execution of LinearSum(A,n) with input parameters A
= [4,3,6,2,5] and n = 5

Linear recursion: Reversing an Array

❑ Swap 1st and last elements, 2nd and second to last, 3rd
and third to last, and so on

❑ If an array contains only one element no need to
swap (Base case)

❑ Update i and j in such a way that they converge to
the base case (i = j)

5 10 18 30 45 50 60 65 70 80

i j

Example 3: Reversing an Array

void reverseArray(int A[], i, j){

if (i < j){

int temp = A[i];

A[i] = A[j];

A[j] = temp;

reverseArray(A, i+1, j-1)

}

// in base case, do nothing

}

Linear recursion: run-time analysis
❑ Time complexity of linear recursion is

proportional to the problem size
▪ Normally, it is equal to the number of times the

function calls itself

❑ In terms of Big-O notation time complexity of a
linear recursive function/algorithm is O(n)

