Recursion

Recursion: Basic idea

1 We have a bigger problem whose solution is
difficult to find

1 We divide/decompose the problem into smaller
(sub) problems

= Keep on decomposing until we reach to the smallest
sub-problem (base case) for which a solution 1s
known or easy to find

= Then go back in reverse order and build upon the
solutions of the sub-problems
d Recursion is applied when the solution of a problem
depends on the solutions to smaller instances of the same
problem

|

FRIEID

rriche

Example 1: Factonal

J A function which calls itself

int factorial (int n) {
if (n #= 0) // base case

return 1,
else /A ge [recursive case
return n *(factorial (n E:E:);

Finding a recursive solution

1 Each successive recursive call should bring you
closer to a situation in which the answer 1is
known (cf. n-1 in the previous slide)

1 A case for which the answer is known (and can

be expressed without recursion) 1s called a base
case

1 Each recursive algorithm must have at least one
base case, as well as the general recursive case

UThe factorial of a positive integer n, denoted n!. is defined as the
product of the integers from 1 to n. For example, 4! =4-3-2-1 = 24.

find_fact(5) 5+24=120

Recursive Case(g =H * 4l l:'_

4*6=24
Recursive Case| 4] = 4 * 3!

3*2=6
B

Recursive Casel_%! =3*2!

2*1=2

Base case | 21! =2*1l_l

Recursion 1n Action: factorial(n)

factorial (5)

X

X

X

o 0 ot o1t LKL L U

120

x factorial (4)

(4 x factorial (3))

(4 x (3 x factorial (2)))

(4

X

(4 x

(4

(4
(4

(4
24

(3 x (2

(3
(3

(3
(3

6)

X

X

X

X

(2
(2
(2
2))

X

X

X

factorial (1))))
(1 x factorial (0)))))
(1 x 1))))

1)))

Base case arrived
Some concept
from elementary
maths: Solve the
inner-most
bracket//first, and
the’'go/outward

Recursion vs. Iteration: Computing N!

] The factorial of a positive integer n, denoted n!, is

defined as the product of the integers from 1 to n. For
example, 4! =4-3-2-1 = 24,
= [terative S ©
1 if n =0

nl =

ool el v 1B if 7 > 1

= Recursive Solution

g if 7 =0

factonal (n) = ¢

K factonal (7 - 1) if n 21

Recursion: Do we really need 1t?

J In some programming languages recursion 1s
Imperative
= For example, 1n declarative/logic languages (LISP,
Prolog etc.)
= Varniables can’t be updated more than once, so no
looping
= Heavy backtracking

Recursion 1n Action: factorial(n)

factorial (5)

X

X

X

o 0 ot o1t LKL L U
"

120

x factorial (4)

(4 x factorial (3))

(4 x (3 x factorial (2)))

(4

(4

(4
(4

(4
24

X

x (4 x

(3 x (2

(3
(3

(3
(3

6)

X

X

X

X

(2
(2
(2
2))

X

X

X

factorial (1))))
(1 x factorial (0)))))
(1 x 1))))

1)))

Base case
arrived

Some concept
from elementary
maths: Solve the

inner-mgst
bracket /first, and
then gg outward

How to write a recursive function?

] Determine the size factor (e.g. n in factorial(n))

1 Determine the base case(s)
= the one for which you know the answer (e.g. 0! = 1)

1 Determine the general case(s)

= the one where the problem 1s expressed as a smaller
version of 1tself (must converge to base case)

1 Verify the algorithm

= use the "Three-Question-Method” — next slide

[Linear Recursion

J The simplest form of recursion 1s linear
recursion, where a method 1s defined so that 1t
makes at most one recursive call each time 1t 1s

invoked

1 This type of recursion 1s useful when we view
an algorithmic problem 1n terms of a first or
last element plus a remaining set that has the
same structure as the original set

Example 2: Summing the Elements of an Array

We can solve this summation problem using linear
recursion by observing that the sum of all » integers 1n
an array A 1s:

= Equal to A[0], if n = 1(The array has one element), or

= The sum of the first » — 1 integers in 4 plus the last element

int LinearSum(int A[], n){
if n = 1 then
return A[0]; // base case
else

return A[n-1] + LinearSum (A, n-1)

Analyzing Recursive Algorithms using
Recursion Traces

(1 Recursion trace for an execution of LinearSum(A,n) with input parameters 4
=[4,3,6,2,5]and n=>5

\call

[LinearSum(A.S5)

\call

E LinearSum{A.4)

oo

(LinearSum(A,3)

\call

[LinearSum(A.2)

N can

(LinearSum(A.1)

return 15 + A[4] = 15 + 5 = 20

return 13 + A[3] =13 +2 = 15

\

retum 7+ Al2]=7+6 =13

\

retum 4 + A[1}=4+3 =7

e

return A[O] =4

Linear recursion: Reversing an Array

3 Swap 1® and last elements, 2" and second to last, 3™
and third to last, and so on

1 If an array contains only one element no need to

swapi_(Base gase) I j

5 (1018304550 60|65 | 70| 80
I

1 Update 1 and j in such a way that they converge to
the base case (1=))

Example 3: Reversing an Array

void reverseArray(int A[], i, J){
if (1 < J){
int temp = A[i];
A[i] = A[3]];
A[j] = temp;

reverseArray (A, i+l, j-1)

}

// in base case, do nothing

Linear recursion: run-time analysis

d Time complexity of linear recursion 1s
proportional to the problem size

= Normally, 1t 1s equal to the number of times the
function calls itself

1 In terms of Big-O notation time complexity of a
linear recursive function/algorithm 1s O(n)

