
Chapter 6

Linked Lists

Algorithms and Data Structures 1

Algorithms and Data Structures 2

Anatomy of a linked list
 A linked list consists of:

A sequence of nodes

a b c d

 Each node contains a value and a link (pointer or reference) to some other node

 The last node contains a null link

 The list may have a header

myList

Algorithms and Data Structures 3

Singly Linked Lists and Arrays

Singly linked list Array

Elements are stored in linear

order, accessible with links.

Do not have a fixed size.

Cannot access the previous

element directly.

No binary search.

Elements are stored in linear

order, accessible with an

index.

Have a fixed size.

Can access the previous

element easily.

Binary search.

Algorithms and Data Structures 4

5

More terminology

 A node’s successor is the next node in the sequence
The last node has no successor

 A node’s predecessor is the previous node in the
sequence
The first node has no predecessor

 A list’s length is the number of elements in it
A list may be empty (contain no elements)

Algorithms and Data Structures

6

Pointers and references
 In C and C++ we have “pointers,” while in Java we have “references”

These are essentially the same thing
The difference is that C and C++ allow you to modify pointers in arbitrary ways, and to
point to anything

 In Java, a reference is more of a “black box,” or ADT (Abstract data
type)

Available operations are:
dereference (“follow”)

copy

compare for equality

There are constraints on what kind of thing is referenced: for example,
a reference to an array of int can only refer to an array of int

Algorithms and Data Structures

7

Creating references
 The keyword new creates a new object, but also returns

a reference to that object

 For example, Person p = new Person("John")
new Person("John") creates the object and returns a reference
to it

We can assign this reference to p, or use it in other ways

Algorithms and Data Structures

8

Creating links in Java

 class Cell { int value;
 Cell next;

 Cell (int v, Cell n) { // constructor
 value = v;
 next = n;
}

 }

 Cell temp = new Cell(17, null);

 temp = new Cell(23, temp);

 temp = new Cell(97, temp);

 Cell myList = new Cell(44, temp);

44 97 23 17

myList:

Algorithms and Data Structures

9

Singly-linked lists
 Here is a singly-linked list (SLL):

 Each node contains a value and a link to its
successor (the last node has no successor)

 The header points to the first node in the list (or
contains the null link if the list is empty)

a b c d

myList

Algorithms and Data Structures

10

Singly-linked lists in Java
 public class SLL {

 private SLLNode first;

 public SLL() {

 this.first = null;
}

 // methods...

 }

• This class actually describes the
header of a singly-linked list

• However, the entire list is
accessible from this header

• Users can think of the SLL as being
the list

• Users shouldn’t have to worry about
the actual implementation

Algorithms and Data Structures

11

SLL nodes in Java
 public class SLLNode {

 protected Object element;

 protected SLLNode succ;

 protected SLLNode(Object elem,
 SLLNode succ) {

 this.element = elem;

 this.succ = succ;

 }
}

Algorithms and Data Structures

12

Creating a simple list
 To create the list ("one", "two", "three"):
SLL numerals = new SLL();

numerals.first =new SLLNode("one“,new SLLNode("two“,new SLLNode("three", null)));

three two one

numerals

Algorithms and Data Structures

13

Traversing a SLL

 The following method traverses a list (and prints its elements):
 public void printFirstToLast() {

 for (SLLNode curr = first; curr != null; curr = curr.succ) {

 System.out.print(curr.element + " ");

 }
}

 You would write this as an instance method of the SLL class

Algorithms and Data Structures

three two one

numerals

14

Traversing a SLL (animation)

three two one

numerals

curr

Algorithms and Data Structures

15

Inserting a node into a SLL
 There are many ways you might want to insert a new node

into a list:
• As the new first element

• As the new last element

• Before a given node (specified by a reference)

• After a given node

• Before a given value

• After a given value

 All are possible, but differ in difficulty

Algorithms and Data Structures

16

Inserting as a new first element

 This is probably the easiest method to implement

 In class SLL (not SLLNode):

void insertAtFront(SLLNode node) {
 node.succ = this.first;
 this.first = node;
}

 Notice that this method works correctly when inserting
into a previously empty list

Algorithms and Data Structures

17

Inserting a node after a given
value
void insertAfter(Object obj, SLLNode node) {

 for (SLLNode here = this.first;

 here != null;

 here = here.succ) {

 if (here.element.equals(obj)) {

 node.succ = here.succ;

 here.succ = node;

 return;

 } // if

 } // for

 // Couldn't insert--do something reasonable!

}

Algorithms and Data Structures

18

Inserting after (animation)

three two one

numerals

2.5 node

 Find the node you want to insert after

 First, copy the link from the node that's already in the list

 Then, change the link in the node that's already in the list

Algorithms and Data Structures

19

Deleting a node from a SLL
 In order to delete a node from a SLL, you have to change

the link in its predecessor

 This is slightly tricky, because you can’t follow a pointer
backwards

 Deleting the first node in a list is a special case, because
the node’s predecessor is the list header

Algorithms and Data Structures

20

Deleting an element from a SLL

three two one

numerals

three two one

numerals

 To delete the first element, change the link in the header

 To delete some other element, change the link in its

predecessor

 Deleted nodes will eventually be garbage collected

Algorithms and Data Structures

21

Deleting from a SLL

 public void delete(SLLNode del) {
 SLLNode succ = del.succ;

 // If del is first node, change link in header

 if (del == first) first = succ;

 else { // find predecessor and change its link

 SLLNode pred = first;

 while (pred.succ != del) pred = pred.succ;

 pred.succ = succ;
 }

 }

Algorithms and Data Structures

three two one

numera
ls

22

• Insertion at the front is O(1)
• insertion at other positions is O(n)
• Removing a node requires a reference to the previous node
• We can traverse the list only in the forward direction

 How to overcome these limitations?

 Double-linked list

Limitations of a singly-linked list

Algorithms and Data Structures

23

Doubly-linked lists

 Here is a doubly-linked list (DLL):

 Each node contains a value, a link to its successor (if any),
and a link to its predecessor (if any)

 The header points to the first node in the list and to the
last node in the list (or contains null links if the list is
empty)

myDLL

a b c

Algorithms and Data Structures

24

DLLs compared to SLLs

 Advantages:
• Can be traversed in either

direction (may be essential
for some programs)

• Some operations, such as
deletion and inserting
before a node, become
easier

 Disadvantages:
• Requires more space

• List manipulations are
slower (because more links
must be changed)

• Greater chance of having
bugs (because more links
must be manipulated)

Algorithms and Data Structures

25

Constructing SLLs and DLLs
 public class SLL {

 private SLLNode first;

 public SLL() {

 this.first = null;
}

 // methods...

 }

 public class DLL {

 private DLLNode first;

 private DLLNode last;

 public DLL() {

 this.first = null;

 this.last = null;
}

 // methods...

 }

Algorithms and Data Structures

26

DLL nodes in Java

 public class DLLNode {
 protected Object element;

 protected DLLNode pred, succ;

 protected DLLNode(Object elem,
 DLLNode pred,
 DLLNode succ) {

 this.element = elem;

 this.pred = pred;

 this.succ = succ;

 }
}

Algorithms and Data Structures

27

Deleting a node from a DLL
 Node deletion from a DLL involves changing two links

 Deletion of the first node or the last node is a special case

 Garbage collection will take care of deleted nodes

myDLL

a b c

Algorithms and Data Structures

28

Other operations on linked lists

 Most “algorithms” on linked lists—such as insertion, deletion, and
searching—are pretty obvious; you just need to be careful

 Sorting a linked list is just messy, since you can’t directly access the
nth element—you have to count your way through a lot of other
elements

Algorithms and Data Structures

29

Circular Lists

Circular double-linked list:

 Link last node to the first node, and

 Link first node to the last node

We can also build singly-linked circular lists:

 Traverse in forward direction only

Advantages:

 Continue to traverse even after passing the first or last node

 Visit all elements from any starting point

 Never fall off the end of a list

Disadvantage: Code must avoid an infinite loop!

END. Algorithms and Data Structures

