
What is Queue?

 Queue is a data structure in which insertion is done at one end

(Front), while deletion is performed at the other end (Rear)

 Contrast with stack, where insertion and deletion at one and the same

end

 It is First In, First Out (FIFO) structure

 For example, customers standing in a check-out line in a store, the first

customer in is the first customer served.

21

Queue operations

 Enqueue: insert an element at the rear of the list

 Dequeue: delete the element at the front of the list

Insert

(Enqueue)
Remove

(Dequeue) rear front

22

Building a Queue Step-by-Step

 There are several different algorithms to implement Enqueue

and Dequeue

 Enqueuing

 The front index is always fixed

 The rear index moves forward in the array

front

rear

Enqueue(3)

3

front

rear

Enqueue(6)

3 6

front

rear

Enqueue(9)

3 6 9

23

Building a Queue Step-by-Step

 Dequeuing

 The element at the front of the queue is removed

 Move all the elements after it by one position

Dequeue()

front

rear

6 9

Dequeue() Dequeue()

front

rear

9

rear = -1

front

24

The Queue Abstract Data Type

• Formally, the queue abstract data type defines a collection that keeps objects
in a sequence, where
• element access and deletion are restricted to the first element in the sequence, the

front of the queue,

• and element insertion is restricted to the end of the sequence, the rear of the queue.

• This restriction enforces the rule that items are inserted and deleted in a queue
according to the first-in first-out (FIFO) principle.

• The queue abstract data type (ADT) supports the following two fundamental
methods:
• enqueue(e): Insert element e at the rear of the queue.

• dequeue(): Remove and return from the queue the object at the front;
• an error occurs if the queue is empty.

• Additionally, similar to the case with the Stack ADT, the queue ADT includes
the following supporting methods:
• size(): Return the number of objects in the queue.

• isEmpty(): Return a Boolean value that indicates whether the queue is empty.

• front(): Return, but do not remove, the front object in the queue;
• an error occurs if the queue is empty.

25

The Queue Abstract Data Type

• Example : The following

table shows a series of

queue operations and their

effects on an initially empty

queue Q of integer objects.

For simplicity, we use

integers instead of integer

objects as arguments of

the operations.

Operation

Output

front ← Q ← rear

enqueue(5)

enqueue(3)

dequeue()

enqueue(7)

dequeue()

front()

dequeue()

dequeue()

isEmpty()

enqueue(9)

enqueue(7)

size()

enqueue(3)

enqueue(5)

dequeue()

-

-

5

-

3

7

7

"error"

true

-

-

2

-

-

9

(5)

(5, 3)

(3)

(3, 7)

(7)

(7)

()

()

()

(9)

(9, 7)

(9, 7)

(9, 7, 3)

(9, 7, 3, 5)

(7, 3, 5)

26

The Queue Abstract Data Type

• Example Applications

• There are several possible applications for queues.
• Stores,

• theaters,

• reservation centers,

• and other similar services typically process customer requests
according to the FIFO principle.

• A queue would therefore be a logical choice for a data
structure to handle transaction processing for such
applications.

• For example, it would be a natural choice for handling
calls to the reservation center of an airline or to the box
office of a theater.

27

Implementing a Queue with a Generic

Linked List
• We can efficiently implement the queue ADT
using a generic singly linked list.

• For efficiency reasons,
• the front of the queue to be at the head of the list,

• and the rear of the queue to be at the tail of the list.

• In this way, we remove from the head and insert at the
tail. Note that we need to maintain references to both
the head and tail nodes of the list. Rather than go into
every detail of this implementation, we simply give a
Java implementation for the fundamental queue
methods in Code Fragment 7.7

28

Code Fragment 7.7: Methods enqueue and dequeue in the implementation of

the queue ADT by means of a singly linked list, using nodes from class Node of

Code Fragment 7.3

29

End

