
CS112

Recursion (Part 1)
Chapter 18

Lecture 13

Spring 2022 -1443 الفصل الدراسي الثاني
College of Computer Science and Engineering

2/30 Programming 2- CS112 – Lecture_13 –برمجة 2

Introduction

• Suppose you want to find all the files under a directory that contains a
particular word. How do you solve this problem?

•There are several ways to solve this problem. Can you give me examples?

•Recursion: An intuitive solution is to use recursion by searching the files in the
subdirectories recursively.

3/30 Programming 2- CS112 – Lecture_13 –برمجة 2

Case Study – Computing Factorial

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

n! = n * (n-1)!

• See ComputeFactorial.java

4/30 Programming 2- CS112 – Lecture_13 –برمجة 2 4

factorial(4)

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (1/10)

5/30 Programming 2- CS112 – Lecture_13 –برمجة 2 5

factorial(4) = 4 * factorial(3)

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (2/10)

6/30 Programming 2- CS112 – Lecture_13 –برمجة 2 6

factorial(4) = 4 * factorial(3)

 = 4 * 3 * factorial(2)

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (3/10)

7/30 Programming 2- CS112 – Lecture_13 –برمجة 2 7

factorial(4) = 4 * factorial(3)

 = 4 * 3 * factorial(2)

 = 4 * 3 * (2 * factorial(1))

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (4/10)

8/30 Programming 2- CS112 – Lecture_13 –برمجة 2 8

factorial(4) = 4 * factorial(3)

 = 4 * 3 * factorial(2)

 = 4 * 3 * (2 * factorial(1))

 = 4 * 3 * (2 * (1 * factorial(0)))

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (5/10)

9/30 Programming 2- CS112 – Lecture_13 –برمجة 2 9

factorial(4) = 4 * factorial(3)

 = 4 * 3 * factorial(2)

 = 4 * 3 * (2 * factorial(1))

 = 4 * 3 * (2 * (1 * factorial(0)))

 = 4 * 3 * (2 * (1 * 1)))

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (6/10)

10/30 Programming 2- CS112 – Lecture_13 –برمجة 2 10

factorial(4) = 4 * factorial(3)

 = 4 * 3 * factorial(2)

 = 4 * 3 * (2 * factorial(1))

 = 4 * 3 * (2 * (1 * factorial(0)))

 = 4 * 3 * (2 * (1 * 1)))

 = 4 * 3 * (2 * 1)

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (7/10)

11/30 Programming 2- CS112 – Lecture_13 –برمجة 2 11

factorial(4) = 4 * factorial(3)

 = 4 * 3 * factorial(2)

 = 4 * 3 * (2 * factorial(1))

 = 4 * 3 * (2 * (1 * factorial(0)))

 = 4 * 3 * (2 * (1 * 1)))

 = 4 * 3 * (2 * 1)

 = 4 * 3 * 2

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (8/10)

12/30 Programming 2- CS112 – Lecture_13 –برمجة 2 12

factorial(4) = 4 * factorial(3)

 = 4 * 3 * factorial(2)

 = 4 * 3 * (2 * factorial(1))

 = 4 * 3 * (2 * (1 * factorial(0)))

 = 4 * 3 * (2 * (1 * 1)))

 = 4 * 3 * (2 * 1)

 = 4 * 3 * 2

 = 4 * 6

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (9/10)

13/30 Programming 2- CS112 – Lecture_13 –برمجة 2 13

factorial(4) = 4 * factorial(3)

 = 4 * 3 * factorial(2)

 = 4 * 3 * (2 * factorial(1))

 = 4 * 3 * (2 * (1 * factorial(0)))

 = 4 * 3 * (2 * (1 * 1)))

 = 4 * 3 * (2 * 1)

 = 4 * 3 * 2

 = 4 * 6

 = 24

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (10/10)

14/30 Programming 2- CS112 – Lecture_13 –برمجة 2 14

Executes factorial(4)

Trace Recursive factorial (1/11)

15/30 Programming 2- CS112 – Lecture_13 –برمجة 2 15

Executes factorial(3)

Trace Recursive factorial (2/11)

16/30 Programming 2- CS112 – Lecture_13 –برمجة 2 16

Executes factorial(2)

Trace Recursive factorial (3/11)

17/30 Programming 2- CS112 – Lecture_13 –برمجة 2 17

Executes factorial(1)

Trace Recursive factorial (4/11)

18/30 Programming 2- CS112 – Lecture_13 –برمجة 2 18

Executes factorial(0)

Trace Recursive factorial (5/11)

19/30 Programming 2- CS112 – Lecture_13 –برمجة 2 19

returns 1

Trace Recursive factorial (6/11)

20/30 Programming 2- CS112 – Lecture_13 –برمجة 2 20

returns factorial(0)

Trace Recursive factorial (7/11)

21/30 Programming 2- CS112 – Lecture_13 –برمجة 2 21

returns factorial(1)

Trace Recursive factorial (8/11)

22/30 Programming 2- CS112 – Lecture_13 –برمجة 2 22

returns factorial(2)

Trace Recursive factorial (9/11)

23/30 Programming 2- CS112 – Lecture_13 –برمجة 2 23

returns factorial(3)

Trace Recursive factorial (10/11)

24/30 Programming 2- CS112 – Lecture_13 –برمجة 2 24

returns factorial(4)

Trace Recursive factorial (11/11)

25/30 Programming 2- CS112 – Lecture_13 –برمجة 2

factorial(4) Stack Trace

26/30 Programming 2- CS112 – Lecture_13 –برمجة 2

Other Examples

f(0) = 0;

f(n) = n + f(n-1);

27/30 Programming 2- CS112 – Lecture_13 –برمجة 2

Case Study - Fibonacci Numbers (1/2)

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

 indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

See ComputeFibonacci.java

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0)
+fib(1) = 1 + fib(1) = 1 + 1 = 2

28/30 Programming 2- CS112 – Lecture_13 –برمجة 2

Case Study - Fibonacci Numbers (2/2)

29/30 Programming 2- CS112 – Lecture_13 –برمجة 2

Characteristics of Recursion

•All recursive methods have the following characteristics:
• One or more base cases (the simplest case) are used to stop recursion.
• Every recursive call reduces the original problem, bringing it increasingly closer to a

base case until it becomes that case.

• In general, to solve a problem using recursion, you break it into subproblems.
If a subproblem resembles the original problem, you can apply the same
approach to solve the subproblem recursively. This subproblem is almost the
same as the original problem in nature with a smaller size.

30/30 Programming 2- CS112 – Lecture_13 –برمجة 2

Problem Solving Using Recursion

Let us consider a simple problem of printing a message for n times. You can
break the problem into two subproblems: one is to print the message one time
and the other is to print the message for n-1 times. The second problem is the
same as the original problem with a smaller size. The base case for the problem
is n==0. You can solve this problem using recursion as follows:

nPrintln(“Welcome“, 5);
public static void nPrintln(String message, int times) {
 if (times >= 1) {
 System.out.println(message);
 nPrintln(message, times - 1);
 } // The base case is times == 0
}

