CS112

Recursion (Part 1) Chapter 18 Lecture 13

الفصل الدراسي الثاني Spring 2022 - 1443 College of Computer Science and Engineering

Introduction

- Suppose you want to find all the files under a directory that contains a particular word. How do you solve this problem?
- There are several ways to solve this problem. <u>Can you give me examples?</u>
- Recursion: An intuitive solution is to use recursion by searching the files in the subdirectories recursively.

Case Study – Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

n! = n * (n-1)!

• See ComputeFactorial.java

Computing Factorial (1/10)

factorial(4)

factorial(0) = 1; factorial(n) = n*factorial(n-1);

Computing Factorial (2/10)

factorial(4) = 4 * factorial(3)

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (3/10)

factorial(4) = 4 * factorial(3) = 4 * 3 * factorial(2) factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Computing Factorial (4/10)

factorial(0) = 1; factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3) = 4 * 3 * factorial(2) = 4 * 3 * (2 * factorial(1))

Computing Factorial (5/10)

factorial(0) = 1; factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))

Computing Factorial (6/10)

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))

Computing Factorial (7/10)

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2) = 4 * 3 * (2 * factorial(1)) = 4 * 3 * (2 * (1 * factorial(0))) = 4 * 3 * (2 * (1 * 1))) = 4 * 3 * (2 * 1)

Computing Factorial (8/10)

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)= 4 * 3 * factorial(2)= 4 * 3 * (2 * factorial(1))= 4 * 3 * (2 * (1 * factorial(0))) = 4 * 3 * (2 * (1 * 1)))= 4 * 3 * (2 * 1)= 4 * 3 * 2

Computing Factorial (9/10)

factorial(0) = 1; factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2) = 4 * 3 * (2 * factorial(1)) = 4 * 3 * (2 * (1 * factorial(0))) = 4 * 3 * (2 * (1 * 1))) = 4 * 3 * (2 * 1) = 4 * 3 * 2 = 4 * 6

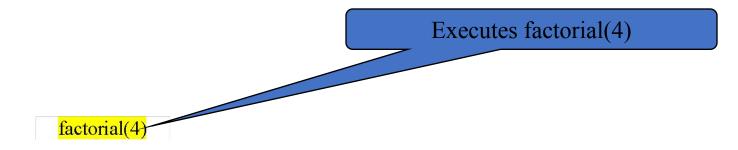
Computing Factorial (10/10)

factorial(0) = 1; factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

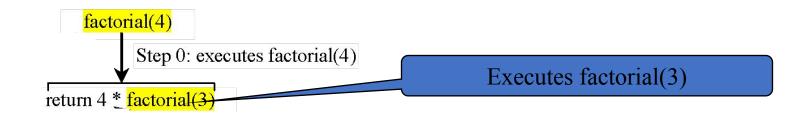
= 4 * 3 * factorial(2)= 4 * 3 * (2 * factorial(1))= 4 * 3 * (2 * (1 * factorial(0))) = 4 * 3 * (2 * (1 * 1)))= 4 * 3 * (2 * 1)= 4 * 3 * 2= 4 * 6= 24

Trace Recursive factorial (1/11)

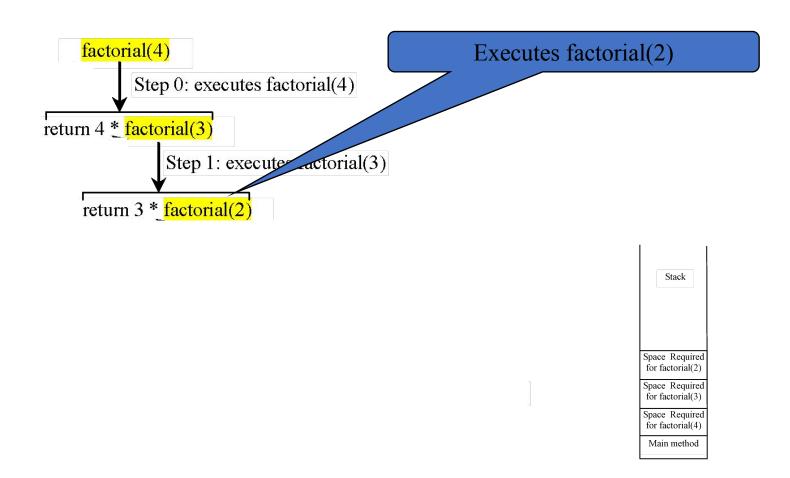


Stack Space Required for factorial(4) Main method

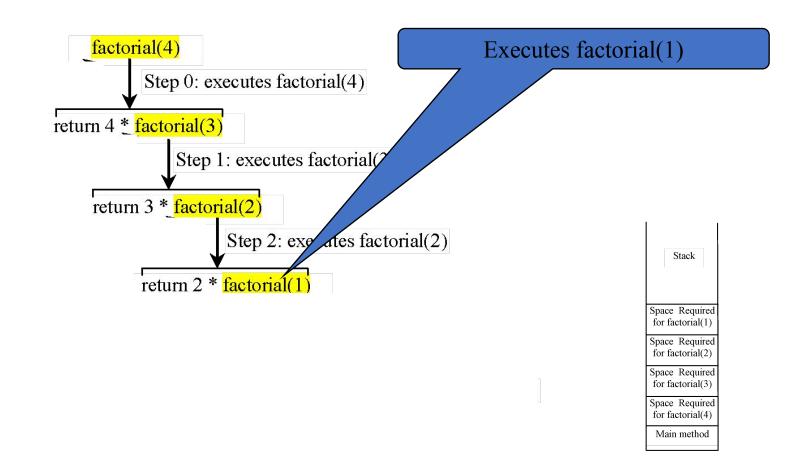
Trace Recursive factorial (2/11)



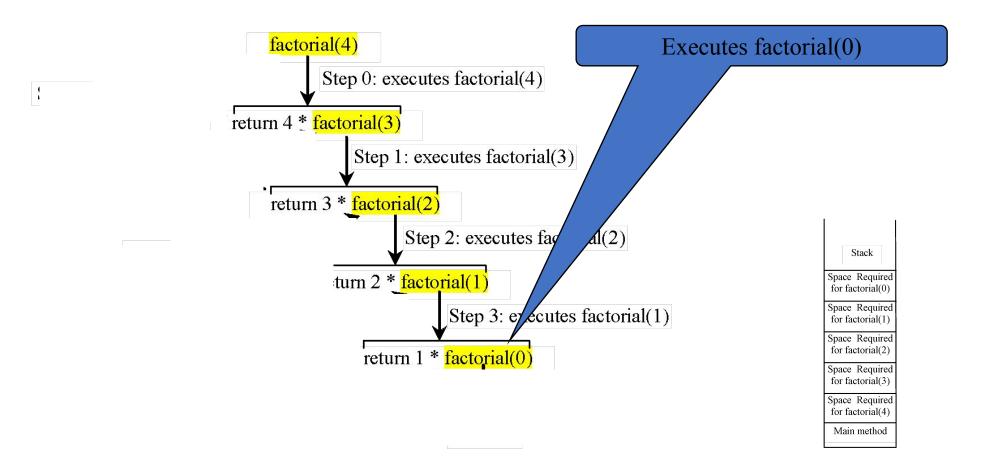
Trace Recursive factorial (3/11)



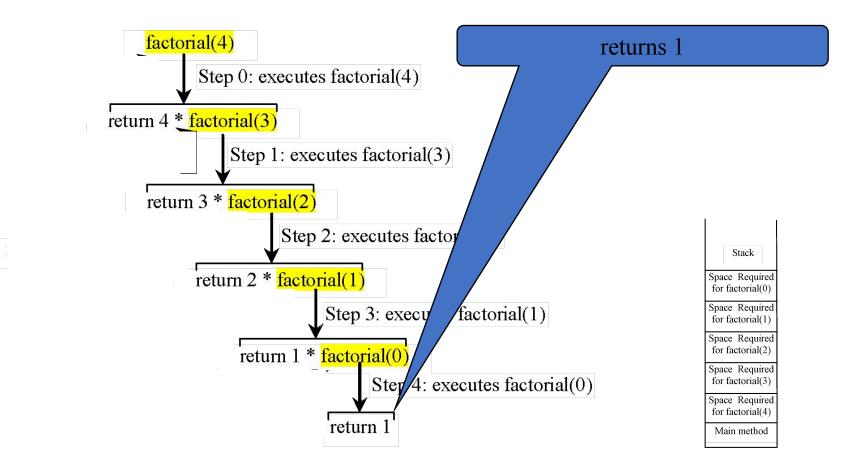
Trace Recursive factorial (4/11)



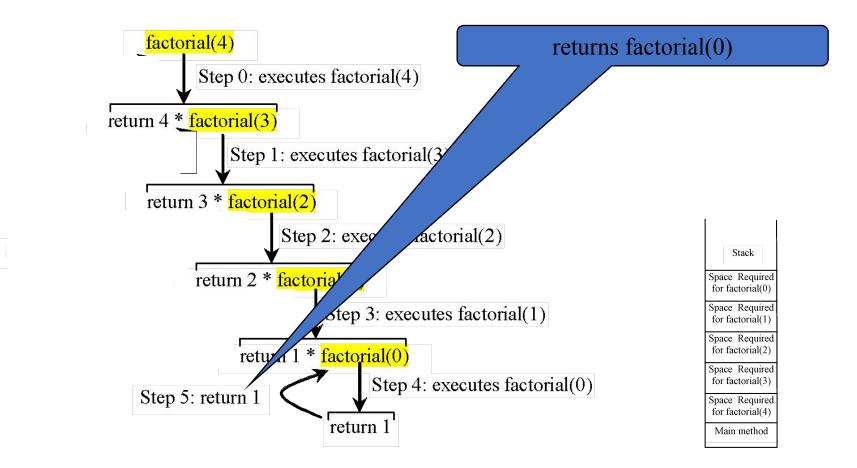
Trace Recursive factorial (5/11)



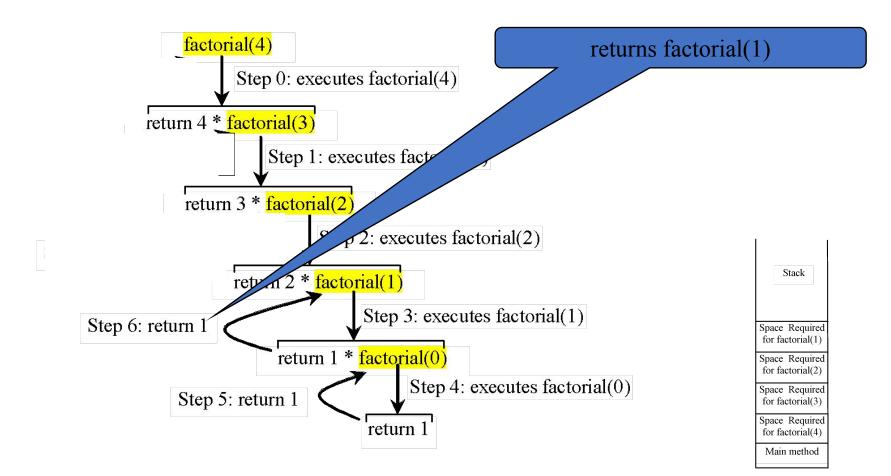
Trace Recursive factorial (6/11)



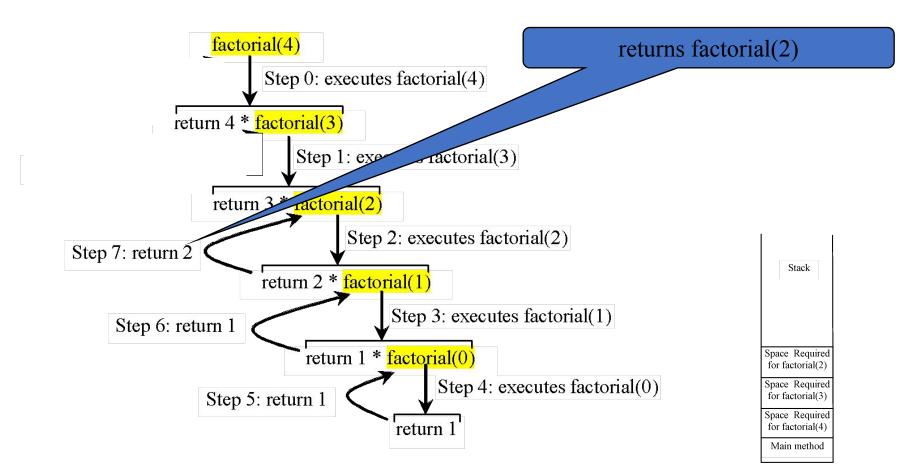
Trace Recursive factorial (7/11)



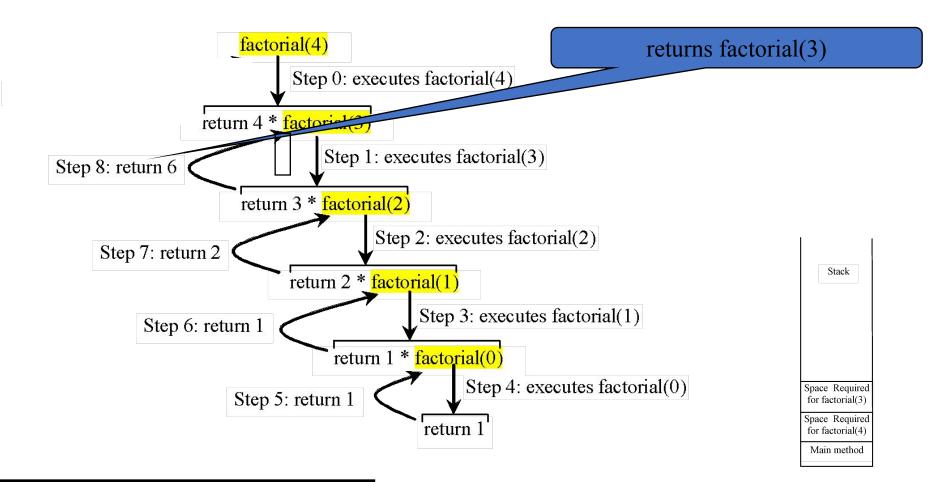
Trace Recursive factorial (8/11)



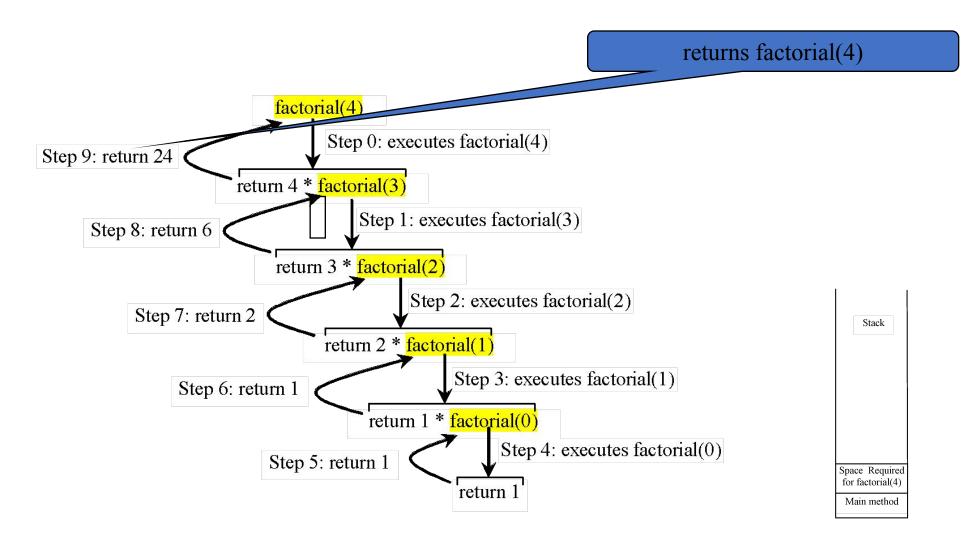
Trace Recursive factorial (9/11)



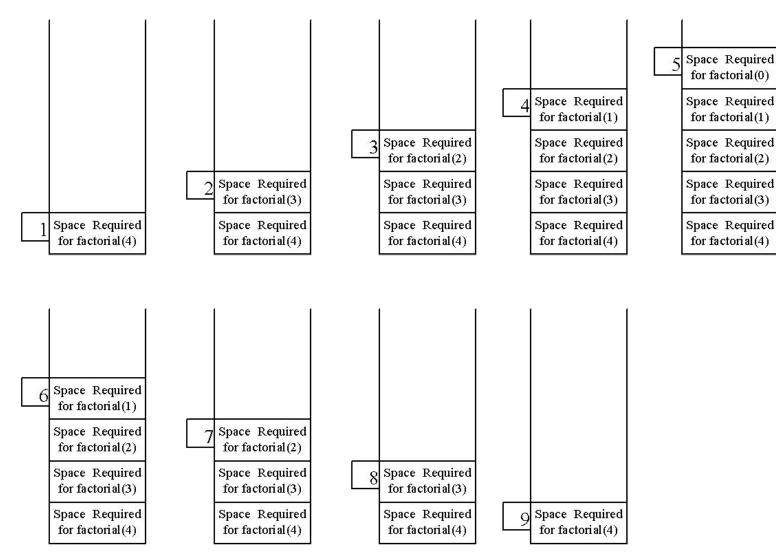
Trace Recursive factorial (10/11)



Trace Recursive factorial (11/11)



factorial(4) Stack Trace



Other Examples

f(0) = 0;

f(n) = n + f(n-1);

Case Study - Fibonacci Numbers (1/2)

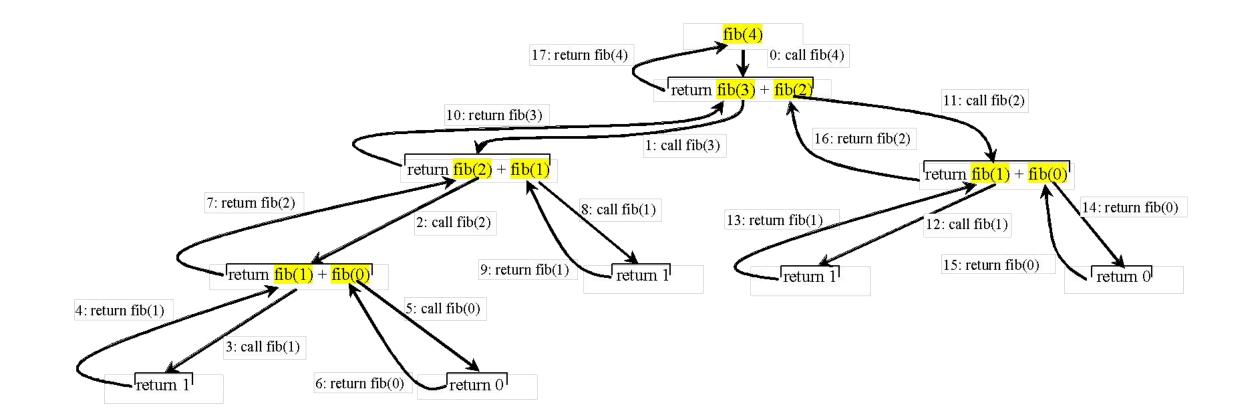
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89... indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

Case Study - Fibonacci Numbers (2/2)



Characteristics of Recursion

- All recursive methods have the following characteristics:
 - One or more base cases (the simplest case) are used to stop recursion.
 - Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case.
- In general, to solve a problem using recursion, you break it into subproblems. If a subproblem resembles the original problem, you can apply the same approach to solve the subproblem recursively. This subproblem is almost the same as the original problem in nature with a smaller size.

Problem Solving Using Recursion

Let us consider a simple problem of printing a message for n times. You can break the problem into two subproblems: one is to print the message one time and the other is to print the message for n-1 times. The second problem is the same as the original problem with a smaller size. The base case for the problem is n==0. You can solve this problem using recursion as follows:

nPrintln("Welcome", 5);

public static void nPrintln(String message, int times) {
 if (times >= 1) {
 System.out.println(message);
 nPrintln(message, times - 1);
 } // The base case is times == 0
}