
CS112

Recursion (Part 2)
Chapter 18

Lecture 14

Spring 2022 -1443 الفصل الدراسي الثاني
College of Computer Science and Engineering

2/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Think Recursively

•Many of the problems presented in the early chapters can be solved using
recursion if you think recursively. For example, the palindrome problem can
be solved recursively as follows:

public static boolean isPalindrome(String s) {
 if (s.length() <= 1) // Base case
 return true;
 else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
 return false;
 else
 return isPalindrome(s.substring(1, s.length() - 1));
}

3/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Recursive Helper Methods

•The preceding recursive isPalindrome method is not efficient, because it
creates a new string for every recursive call. To avoid creating new strings, use
a helper method:

public static boolean isPalindrome(String s) {
 return isPalindrome(s, 0, s.length() - 1);
}
public static boolean isPalindrome(String s, int low, int high) {
 if (high <= low) // Base case
 return true;
 else if (s.charAt(low) != s.charAt(high)) // Base case
 return false;
 else
 return isPalindrome(s, low + 1, high - 1);
}

4/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Case Study - Recursive Selection Sort

1. Find the smallest number in the list and swaps it with the first number.

2. Ignore the first number and sort the remaining smaller list recursively.

• See RecursiveSelectionSort.java

5/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Recursion vs. Iteration

•Recursion is an alternative form of program control. It is essentially repetition
without a loop.

•Recursion bears substantial overhead. Each time the program calls a method,
the system must assign space for all of the method’s local variables and
parameters. This can consume considerable memory and requires extra time
to manage the additional space.

•Advantages of Using Recursion:
• Recursion is good for solving the problems that are inherently recursive.

6/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Case Study – Computing GCD (Greatest Common
Devisor)
• The gcd(m, n) can also be defined recursively as follows:

• If m % n is 0, gcd(m, n) is n.
• Otherwise, gcd(m, n) is gcd(n, m % n).

gcd(2, 3) = 1

gcd(2, 10) = 2

gcd(25, 35) = 5

gcd(205, 301) = 5

gcd(m, n)

Approach 1: Brute-force, start from min(n, m) down to 1, to check if a number is
common divisor for both m and n, if so, it is the greatest common divisor.

Approach 2: Euclid’s algorithm

Approach 3: Recursive method

7/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Approach 2: Euclid’s algorithm
// Get absolute value of m and n;
t1 = Math.abs(m); t2 = Math.abs(n);
// r is the remainder of t1 divided by t2;
r = t1 % t2;
while (r != 0) {
 t1 = t2;
 t2 = r;
 r = t1 % t2;
}

// When r is 0, t2 is the greatest common
// divisor between t1 and t2
return t2;

8/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Approach 3: Recursive Method
gcd(m, n) = n if m % n = 0;
gcd(m, n) = gcd(n, m % n); otherwise;

• See GCD.java

9/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Tail Recursion

•A recursive method is said to be tail recursive if there are no pending
operations to be performed on return from a recursive call.
•Examples:

• Non-tail recursive: ComputeFactorial.java
• Tail Recursive: ComputeFactorialTailRecursion.java

10/10 Programming 2- CS112 – Lecture_14 –برمجة 2

Recommended Readings

•Recursive Binary Search: Page 716

• Finding Directory Size: Page 717

•Tower of Hanoi: Page719

