CS112

Recursion (Part 2)
Chapter 18

Lecture 14

Spring 2022 -1443 (AUl) Al Juadl)
College of Computer Science and Engineering

Think Recursively

* Many of the problems presented in the early chapters can be solved using
recursion if you think recursively. For example, the palindrome problem can
be solved recursively as follows:

public static boolean isPalindrome(String s) {
if (s.length() <= 1) // Base case
return true;
else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
return false;
else
return 1sPalindrome(s.substring(1, s.length() - 1));

j

2/10 2 434 - Programming 2- CS112 — Lecture_14

Recursive Helper Methods

* The preceding recursive isPalindrome method is not efficient, because it
creates a new string for every recursive call. To avoid creating new strings, use

a helper method:
P public static boolean isPalindrome(String s) {

return 1sPalindrome(s, 0, s.length() - 1);
)
public static boolean isPalindrome(String s, int low, int high) {
if (high <= low) // Base case
return true;
else 1f (s.charAt(low) != s.charAt(high)) // Base case
return false;
else
return 1sPalindrome(s, low + 1, high - 1);

b

3/10 2 434 - Programming 2- CS112 — Lecture_14

Case Study - Recursive Selection Sort

1. Find the smallest number in the list and swaps it with the first number.
2. lgnore the first number and sort the remaining smaller list recursively.

* See RecursiveSelectionSort.java

4/10 2 434 - Programming 2- CS112 — Lecture_14

Recursion vs. Iteration

* Recursion is an alternative form of program control. It is essentially repetition
without a loop.

* Recursion bears substantial overhead. Each time the program calls a method,
the system must assign space for all of the method’s local variables and
parameters. This can consume considerable memory and requires extra time
to manage the additional space.

* Advantages of Using Recursion:
* Recursion is good for solving the problems that are inherently recursive.

5/10 2 434 - Programming 2- CS112 — Lecture_14

Case Study — Computing GCD (Greatest Common
Devisor)

* The ged(m, n) can also be defined recursively as follows:
* Ifm%nis0, gcd(m, n)isn.
* Otherwise, ged(m, n) is gcd(n, m % n).

gcd(2,3)=1
gcd(2, 10) =2
gcd(25,35) =5
gcd(205,301)=5
gcd(m, n)

Approach 1: Brute-force, start from min(n, m) down to 1, to check if a number is
common divisor for both m and n, if so, it is the greatest common divisor.

Approach 2: Euclid’s algorithm

Approach 3: Recursive method

6/10 2 434 - Programming 2- CS112 — Lecture_14

Approach 2: Euclid’ s algorithm

// Get absolute value of m and n;

tl = Math.abs(m),; t2 = Math.abs(n);

// r is the remainder of tl divided by t2;
r = tl $ t2;

// When r is 0, t2 is the greatest common
// divisor between tl and t2
return t2;

7/10 2 434 - Programming 2- CS112 — Lecture_14

Approach 3: Recursive Method

gcd(m,n)=nifm%n=0;
gcd(m, n) = gcd(n, m % n); otherwise;

*See GCD.java

2 A - Programming 2- CS112 — Lecture_14

Tail Recursion

* A recursive method is said to be tail recursive if there are no pending
operations to be performed on return from a recursive call.

* Examples:
* Non-tail recursive: ComputeFactorial.java
* Tail Recursive: ComputeFactorialTailRecursion.java

Recursive method A Recursive method B

Invoke method B recursively

Invoke method A recursively

(a) Tail recursion (b) Nontail recursion

9/10 2 434 - Programming 2- CS112 — Lecture_14

Recommended Readings

* Recursive Binary Search: Page 716
* Finding Directory Size: Page 717
e Tower of Hanoi: Page719

10/10 2 434 - Programming 2- CS112 — Lecture_14

