CS112

Objects and Classes (Part 2)

Lecture 03

Spring 2022 - 1443
College of Computer Science and Engineering

Differences between Variables of Primitive Data Types
and Object Types

Primitive type int1=1 1 1

Created usinlnew Circle()

Object type Circle ¢ C reference » ¢ Circle

radius = 1

2 A - Programming 2- CS112 — Lecture_03

Copying Variables of Primitive Data Types and Object
Types

Primitive type assignment 1= j

Before: After:
1 1 1 2
J 2 j 2

Object type assignment ¢l = ¢c2

Before: After:
cl — cl =
c2 c2 —
\ 4 1
cl: Circle C2: Circle cl: Circle C2: Circle
radius =5 radius =9 radius = 5 radius = 9

3/14 2 454 - Programming 2- CS112 — Lecture_03

Garbage Collection

* As shown in the previous figure, after the assignment statement cl =c2, cl
points to the same object referenced by c2.

* The object previously referenced by c1 is no longer referenced. This object is
known as garbage. Garbage is automatically collected by JVM.

*TIP: If you know that an object is no longer needed, you can explicitly assign
null to a reference variable for the object:

* The JVM will automatically collect the space if the object is not referenced by any
variable .

4/14 2 454 - Programming 2- CS112 — Lecture_03

The Date Class

* Java provides a system-independent encapsulation of date and time in the

java.util.Date class.

* You can use the Date class to create an instance for the current date and time
and use its toString method to return the date and time as a string.

The + sign indicates

public modifer ——>

java.util.Date

+Date()
+Date(elapseTime: long)

+toString(): String
+getTime(): long

+setTime(elapseTime: long): void

5/14 2 454 - Programming 2- CS112 — Lecture_03

Constructs a Date object for the current time.

Constructs a Date object for a given time in
milliseconds elapsed since January 1, 1970, GMT.

Returns a string representing the date and time.

Returns the number of milliseconds since January 1,
1970, GMT.

Sets a new elapse time 1n the object.

The Date Class Example

* For example, the following code

java.util.Date date = new java.util.Date();
System.out.println (date.toString());

displays a string like Sun Mar 09 13:50:19 EST 2003.

6/14 2 454 - Programming 2- CS112 — Lecture_03

The Random Class

* You have used Math.random() to obtain a random double value between 0.0
and 1.0 (excluding 1.0). A more useful random number generator is provided
in the java.util.Random class.

java.util. Random
+Random() Constructs a Random object with the current time as its seed.
+Random(seed: long) Constructs a Random object with a specified seed.
+nextInt(): int Returns a random int value.
+nextInt(n: int): int Retums a random int value between O and n (exclusive).
+nextLong(): long Retums a random long value.
+nextDouble(): double Retumns a random double value between 0.0 and 1.0 (exclusive).
+nextlloat(): float Retums a random float value between 0.0F and 1.0F (exclusive).
+nextBoolean(): boolean | Returns a random boolean value.

7/14 2 454 - Programming 2- CS112 — Lecture_03

The Random Class Example

* If two Random objects have the same seed, they will generate identical
sequences of numbers.

* For example, the following code creates two Random objects with the same
seed 3.

Random randoml = new Random(3) ;
System.out.print("From randoml: ") ;
for (int 1i = 0; i < 10; i++)

System.out.print (randoml.nextInt (1000) + " ");
Random random2 = new Random(3) ;
System.out.print ("\nFrom random2: ");
for (int 1i = 0; i < 10; i++)

System.out.print (random2.nextInt (1000) + " ");

From random1: 734 660 210 581 128 202 549 564 459 961

From random?2: 734 660 210 581 128 202 549 564 459 961

Instance Variables, and Methods

* Instance variables belong to a specific instance.
* Instance methods are invoked by an instance of the class.

9/14 2 454 - Programming 2- CS112 — Lecture_03

Static Variables, Constants, and Methods (1)

e Static variables are shared by all the instances of the class.
e Static methods are not tied to a specific object.

* Static constants are final variables shared by all the instances of the class.

2 A - Programming 2- CS112 — Lecture_03

Static Variables, Constants, and Methods (2)

* To declare static variables, constants, and methods, use the static modifier.

11/14 2 454 - Programming 2- CS112 — Lecture_03

public class CircleWithStaticMembers {

Example 1 (1) /** The radius of the circle */

double radius;

/** The number of the objects created */

'ThIS example adds 3 CIaSS static int numberOfObjects = 0;

/** Construct a circle with radius 1 */

variable numberOfObijects to CircleWithStaticMembers () {

radius = 1.0;

track the number of Circle | NumberOfObSects++;

ObJeCtS Created- /** Construct a circle with a specified radius */
CircleWithStaticMembers (double newRadius) {
radius = newRadius;

numberOfObjects++;
}

/** Return numberOfObjects */
static int getNumberOfObjects () {
return numberOfObjects;

}

/** Return the area of this circle */
double getArea() {
return radius * radius * Math.PI;

}

12/14 2 454 - Programming 2- CS112 — Lecture_03

public class TestCircleWithStaticMembers

E I 1 2 /** Main method */
xa mp e public static void main (String[] args) {

System.out.println ("Before creating objects");
System.out.println ("The number of Circle objects is " +
. CircleWithStaticMembers.numberOfObjects) ;
* This example adds a class
// Create cl
. . CircleWithStaticMembers cl = new CircleWithStaticMembers() ;
variable numberOfObijects to
// Display cl BEFORE c2 is created
R System.out.println ("\nAfter creating cl");
traCk the number Of Cer|e System.out.println("cl: radius (" + cl.radius +
") and number of Circle objects (" +
. cl.numberOfObjects + ™)");
objects created.
// Create c2
CircleWithStaticMembers c2 = new CircleWithStaticMembers (5);

// Modify cl
cl.radius = 9;

// Display cl and c2 AFTER c2 was created
System.out.println ("\nAfter creating c2 and modifying cl");
System.out.println("cl: radius (" + cl.radius +

") and number of Circle objects (" +

cl.numberOfObjects + ")");
System.out.println("c2: radius (" + c2.radius +

") and number of Circle objects (" +

c2.numberOfObjects + ™)");

IR 2 454 - Programming 2- CS112 — Lecture_03

Example 1 (3)

* This example adds a class

variable numberOfObijects to

track the number of Circle

objects created.

UML Notation:

underline: static variables or methods

Circle

instantiate

radius: double
numberOfObjects: int

getNumberOfObjects(): int

getArea(): double

instantiate

>

circlel: Circle

Memory

radius = 1
nhumber0fObjects

circle2: Circle

Objects were created,

numberOfObjects
/ 152

e) | humberOfObjects

> | radius _— Aftertwo Circle
| s
/

radius = 5
number0fObjects

\) > 5 radius

14/14 2 454 - Programming 2- CS112 — Lecture_03

