
CS112

Polymorphism
Lecture 06

Spring 2022 - 1443

College of Computer Science and Engineering

2/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Introduction

•Polymorphism means that a variable of a supertype can refer to a subtype
object.

•A class defines a type.

•A type defined by a subclass is called a subtype, and a type defined by its
superclass is called a supertype.

•Therefore, you can say that Circle is a subtype of GeometricObject and
GeometricObject is a supertype for Circle.

3/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Polymorphism, Dynamic Binding and Generic
Programming

public class PolymorphismDemo {
 public static void main(String[] args) {
 m(new GraduateStudent());
 m(new Student());
 m(new Person());
 m(new Object());
 }

 public static void m(Object x) {
 System.out.println(x.toString());
 }
}

class GraduateStudent extends Student {
}

class Student extends Person {
 public String toString() {
 return "Student";
 }
}

class Person extends Object {
 public String toString() {
 return "Person";
 }
}

Method m takes a parameter
of the Object type. You can
invoke it with any object.

An object of a subtype can be used wherever its
supertype value is required. This feature is
known as polymorphism.

When the method m(Object x) is executed, the
argument x’s toString method is invoked. x
may be an instance of GraduateStudent,
Student, Person, or Object. Classes
GraduateStudent, Student, Person, and Object
have their own implementation of the toString
method. Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime. This capability is known
as dynamic binding.

4/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Dynamic Binding

•Dynamic binding works as follows: Suppose an object o is an instance of
classes C

1
, C

2
, ..., C

n-1
, and C

n
, where C

1
 is a subclass of C

2
, C

2
 is a subclass of C

3
,

..., and C
n-1

 is a subclass of C
n
. That is, C

n
 is the most general class, and C

1
 is the

most specific class. In Java, C
n
 is the Object class. If o invokes a method p, the

JVM searches the implementation for the method p in C
1
, C

2
, ..., C

n-1
and C

n
, in

this order, until it is found. Once an implementation is found, the search stops
and the first-found implementation is invoked.

5/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Method Matching vs. Binding

•Matching a method signature and binding a method implementation are two
issues.

•The compiler finds a matching method according to parameter type, number
of parameters, and order of the parameters at compilation time.

•A method may be implemented in several subclasses.

•The Java Virtual Machine dynamically binds the implementation of the
method at runtime.

6/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Generic Programming
public class PolymorphismDemo {
 public static void main(String[] args) {
 m(new GraduateStudent());
 m(new Student());
 m(new Person());
 m(new Object());
 }

 public static void m(Object x) {
 System.out.println(x.toString());
 }
}

class GraduateStudent extends Student {
}

class Student extends Person {
 public String toString() {
 return "Student";
 }
}

class Person extends Object {
 public String toString() {
 return "Person";
 }
}

Polymorphism allows methods to be used
generically for a wide range of object
arguments. This is known as generic
programming. If a method’s parameter
type is a superclass (e.g., Object), you may
pass an object to this method of any of
the parameter’s subclasses (e.g., Student
or String). When an object (e.g., a Student
object or a String object) is used in the
method, the particular implementation of
the method of the object that is invoked
(e.g., toString) is determined dynamically.

7/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Casting Objects
• You have already used the casting operator to convert variables of

one primitive type to another.

• Casting can also be used to convert an object of one class type to
another within an inheritance hierarchy. In the preceding section,
the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type.
This statement is equivalent to:

Object o = new Student(); // Implicit casting
m(o);

The statement Object o = new Student(), known as
implicit casting, is legal because an instance of
Student is automatically an instance of Object.

8/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Why Casting Is Necessary?

• Suppose you want to assign the object reference o to a variable of the Student type using
the following statement:

Student b = o;

• A compile error would occur. Why does the statement Object o = new Student() work and

the statement Student b = o doesn’t? This is because a Student object is always an instance
of Object, but an Object is not necessarily an instance of Student. Even though you can see
that o is really a Student object, the compiler is not so clever to know it. To tell the compiler
that o is a Student object, use an explicit casting. The syntax is similar to the one used for
casting among primitive data types. Enclose the target object type in parentheses and place
it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

9/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Casting from Superclass to Subclass

•Explicit casting must be used when casting an object from a superclass to a
subclass. This type of casting may not always succeed.

Apple x = (Apple)fruit;

Orange x = (Orange)fruit;

10/26 Programming 2- CS112 – Lecture_06 –برمجة 2

The instanceof Operator

•Use the instanceof operator to test whether an object is an instance of a
class:

Object myObject = new Circle();
... // Some lines of code
/** Perform casting if myObject is an instance of
Circle */

if (myObject instanceof Circle) {
 System.out.println("The circle diameter is " +
 ((Circle)myObject).getDiameter());
 ...
}

11/26 Programming 2- CS112 – Lecture_06 –برمجة 2 11

TIP

To help understand casting, you may also
consider the analogy of fruit, apple, and
orange with the Fruit class as the superclass
for Apple and Orange. An apple is a fruit, so
you can always safely assign an instance of
Apple to a variable for Fruit. However, a fruit
is not necessarily an apple, so you have to
use explicit casting to assign an instance of
Fruit to a variable of Apple.

12/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Example: CastingDemo.java

13/26 Programming 2- CS112 – Lecture_06 –برمجة 2

The equals Method

•The equals() method compares the
contents of two objects. The default implementation of the equals method in
the Object class is as follows:

public boolean equals(Object obj) {
 return this == obj;
}

For example, the
equals method is
overridden in
the Circle
class.

public boolean equals(Object o) {
 if (o instanceof Circle) {
 return radius == ((Circle)o).radius;
 }
 else
 return false;
}

14/26 Programming 2- CS112 – Lecture_06 –برمجة 2 14

NOTE
The == comparison operator is used for
comparing two primitive data type values or for
determining whether two objects have the same
references. The equals method is intended to
test whether two objects have the same
contents, provided that the method is modified
in the defining class of the objects. The ==
operator is stronger than the equals method, in
that the == operator checks whether the two
reference variables refer to the same object.

15/26 Programming 2- CS112 – Lecture_06 –برمجة 2

The ArrayList Class

•You can create an array to store objects. But the array’s size is fixed once the
array is created. Java provides the ArrayList class that can be used to store an
unlimited number of objects.

16/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Generic Type

•ArrayList is known as a generic class with a generic type E. You can specify a
concrete type to replace E when creating an ArrayList. For example, the
following statement creates an ArrayList and assigns its reference to variable
cities. This ArrayList object can be used to store strings.

ArrayList<String> cities = new ArrayList<String>();

ArrayList<String> cities = new ArrayList<>();

17/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Differences and Similarities between Arrays and
ArrayList

18/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Array Lists from/to Arrays

•Creating an ArrayList from an array of objects:

 String[] array = {"red", "green", "blue"};

 ArrayList<String> list = new ArrayList<>(Arrays.asList(array));

•Creating an array of objects from an ArrayList:

 String[] array1 = new String[list.size()];

 list.toArray(array1);

19/26 Programming 2- CS112 – Lecture_06 –برمجة 2

max and min in an Array List

String[] array = {"red", "green", "blue"};

System.out.pritnln(java.util.Collections.max(

 new ArrayList<String>(Arrays.asList(array)));

String[] array = {"red", "green", "blue"};

System.out.pritnln(java.util.Collections.min(

 new ArrayList<String>(Arrays.asList(array)));

20/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Shuffling an Array List

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};

ArrayList<Integer> list = new

 ArrayList<>(Arrays.asList(array));

java.util.Collections.shuffle(list);

System.out.println(list);

21/26 Programming 2- CS112 – Lecture_06 –برمجة 2

The protected Modifier

•The protected modifier can be applied on data and methods in a class. A
protected data or a protected method in a public class can be accessed by any
class in the same package or its subclasses, even if the subclasses are in a
different package.

•private, default, protected, public

22/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Accessibility Summary

23/26 Programming 2- CS112 – Lecture_06 –برمجة 2

Visibility Modifiers

24/26 Programming 2- CS112 – Lecture_06 –برمجة 2

A Subclass Cannot Weaken the Accessibility

•A subclass may override a protected method in its superclass and change its
visibility to public.

•However, a subclass cannot weaken the accessibility of a method defined in
the superclass.

• For example, if a method is defined as public in the superclass, it must be
defined as public in the subclass.

25/26 Programming 2- CS112 – Lecture_06 –برمجة 2 25

NOTE

The modifiers are used on classes and
class members (data and methods), except
that the final modifier can also be used on
local variables in a method. A final local
variable is a constant inside a method.

26/26 Programming 2- CS112 – Lecture_06 –برمجة 2

The final Modifier

• The final class cannot be extended:

 final class Math {

 ...

 }

• The final variable is a constant:

 final static double PI = 3.14159;

• The final method cannot be
overridden by its subclasses.

