
CS112

Exception Handling (Part 1)
Chapter 12

Lecture 07

Spring 2021 -1442 الفصل الدراسي الثاني
College of Computer Science and Engineering

2/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Why do we need exception handling?

•When a program runs into a runtime error, the program terminates
abnormally

•How can you handle the runtime error so that the program can continue to
run or terminate gracefully?
• This is the subject we will introduce in this chapter (Chapter 12)

3/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Overview - Examples

• Show runtime error:
• Quotient.java

• Fix it using an if statement:
• QuotientwithIf.java

• Fix it using a method:
• QuotientWithMethod

4/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Exception Advantages

•Now you see the advantages of using exception handling:
• It enables a method to throw an exception to its caller
• Without this capability, a method must handle the exception or terminate the program
• Example: QuoteintWithException.java

5/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Handling InputMismatchException

•By handling InputMismatchException, your program will continuously read an
input until it is correct
• Example: InputMismatchException.java

6/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Exception Types

7/21 Programming 2- CS112 – Lecture_07 –برمجة 2

System Errors

System errors are thrown by JVM
and represented in the Error class.
The Error class describes internal
system errors. Such errors rarely
occur. If one does, there is little
you can do beyond notifying the
user and trying to terminate the
program gracefully.

8/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Exceptions
Exception describes errors
caused by your program
and external
circumstances. These
errors can be caught and
handled by your program.

9/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Runtime Exceptions

RuntimeException is caused by
programming errors, such as bad
casting, accessing an out-of-bounds
array, and numeric errors.

10/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Checked Exceptions vs. Unchecked Exceptions

•RuntimeException, Error and their subclasses are known as unchecked
exceptions

•All other exceptions are known as checked exceptions 🡪 meaning that the
compiler forces the programmer to check and deal with the exceptions

11/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Unchecked Exceptions

• In most cases, unchecked exceptions reflect programming logic errors that are
not recoverable

•Examples:
• NullPointerException is thrown if you access an object through a reference variable

before an object is assigned to it
• IndexOutOfBoundsException is thrown if you access an element in an array outside the

bounds of the array.

•These are the logic errors that should be corrected in the program.

•Unchecked exceptions can occur anywhere in the program.

•To avoid cumbersome overuse of try-catch blocks, Java does not mandate you
to write code to catch unchecked exceptions.

12/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Unchecked Exceptions

Unchecked exception

13/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Declaring, Throwing, and Catching Exceptions

14/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Declaring Exceptions

•Every method must state the types of checked exceptions it might throw. This
is known as declaring exceptions.

public void myMethod()
 throws IOException

public void myMethod()
 throws IOException, OtherException

15/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Throwing Exceptions

•When the program detects an error, the program can create an instance of an
appropriate exception type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

16/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Throwing Exceptions Example

 /** Set a new radius */
 public void setRadius(double newRadius)
 throws IllegalArgumentException {
 if (newRadius >= 0)
 radius = newRadius;
 else
 throw new IllegalArgumentException(
 "Radius cannot be negative");
 }

17/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Catching Exceptions

try {
 statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVar3) {
 handler for exceptionN;
}

18/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Catching Exceptions

19/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Catch or Declare Checked Exceptions

• Suppose p2 is defined as follows:

20/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Catch or Declare Checked Exceptions
Java forces you to deal with checked exceptions. If a method declares a
checked exception (i.e., an exception other than Error or
RuntimeException), you must invoke it in a try-catch block or declare to
throw the exception in the calling method. For example, suppose that
method p1 invokes method p2 and p2 may throw a checked exception (e.g.,
IOException), you have to write the code as shown in (a) or (b).

21/21 Programming 2- CS112 – Lecture_07 –برمجة 2

Example

•TestCircleWithException.java

•CircleWithException.java

