CS112

Abstract Classes
Chapter 13

Lecture 09

Spring 2021 -1442 Ul (ol ) Juaidl)
College of Computer Science and Engineering



Introduction

*You can use the java.util.Arrays.sort method to sort an array of numbers or
strings. Can you apply the same sort method to sort an array of geometric
objects?

* |n order to write such code, you have to know about interfaces

* An interface is for defining common behavior for classes (including unrelated
classes). Before discussing interfaces, we introduce a closely related subject:
abstract classes

2/15 2 454 - Programming 2- CS112 — Lecture_09




Abstract Classes

*In the inheritance hierarchy:
e classes become more specific and concrete with each new subclass

* |f you move from a subclass back up to a superclass, the classes become more general
and less specific

* Class design should ensure that a superclass contains common features of its subclasses

* Sometimes a superclass is so abstract that it cannot be used to create any specific
instances . Such a class is referred to as an abstract class

3/15 2 454 - Programming 2- CS112 — Lecture_09




Example 1: GeometricObject Class

GeometricObject

-<«———— Abstract class name is italicized

String
boolean
java.util.Date

-color:
-filled:
—~dateCreated:

The # sign indicates
protected modifier

Abstract methods — >
are italicized

#GeometricObject ()

#GeometricObject(color: string,
filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean):
+getDateCreated():

+toString(): String
+getArea(): double

+getPerimeter(): double

void
java.util.Date

Methods getArea and getPerimeter are

T 7

overridden in Circle and Rectangle.
Superclass methods are generally omitted

in the UML diagram for subclasses.

Circle Rectangle
-radius: double -width: double
= -height: double
+Circle(QO
+Circle(radius: double) +Rectang1e(). )
+Circle(radius: double, color: string, +Rectangle(width: double, height: double)
filled: boolean) +Rectangle(width: double, height: double,
+getRadius(): double color: string, filled: boolean)
+setRadius(radius: double): void +getWidth() : double
+getDiameter(): double +setWidth(width: double): void
+getHeight(): double
II- +setHeight(Cheight: double): void




Abstract Classes and Abstract Methods (1)

e An abstract method cannot be contained in a nonabstract class

* If a subclass of an abstract superclass does not implement all the abstract
methods, the subclass must be defined abstract

* |In other words, in a nonabstract subclass extended from an abstract class, all
the abstract methods must be implemented, even if they are not used in the
subclass

* Abstract classes are like regular classes, but you cannot create instances of
abstract classes using the new operator

* An abstract method is defined without implementation. Its implementation is
provided by the subclasses. A class that contains abstract methods must be
defined as abstract

5/15 2 454 - Programming 2- CS112 — Lecture_09




Abstract Classes and Abstract Methods (2)

* Therefore, the following statement, which creates an array whose elements
are of GeometricObject type, is correct.

GeometricObject[] geo = new GeometricObject[10];

6/15 2 454 - Programming 2- CS112 — Lecture_09




Constructor of an Abstract Class

* The constructor in the abstract class is defined as protected, because it is used
only by subclasses

* When you create an instance of a concrete subclass, its superclass’s
constructor is invoked to initialize data fields defined in the superclass

7/15 2 454 - Programming 2- CS112 — Lecture_09




Object cannot be created from abstract class

* An abstract class cannot be instantiated using the new operator, but you can
still define its constructors, which are invoked in the constructors of its
subclasses

* For instance, the constructors of GeometricObject are invoked in the Circle
class and the Rectangle class.

8/15 2 454 - Programming 2- CS112 — Lecture_09




Abstract Class without Abstract Method

e A class that contains abstract methods must be abstract

* However, it is possible to define an abstract class that contains no abstract
methods

* In this case, you cannot create instances of the class using the new operator.
This class is used as a base class for defining a new subclass

* Superclass of abstract class may be concrete:
* A subclass can be abstract even if its superclass is concrete.

* For example, the Object class is concrete, but its subclasses, such as GeometricObject,
may be abstract

9/15 2 454 - Programming 2- CS112 — Lecture_09




Concrete method overridden to be abstract

* A subclass can override a method from its superclass to define it abstract

* This is rare, but useful when the implementation of the method in the
superclass becomes invalid in the subclass

* I[n this case, the subclass must be defined abstract

10/15 2 454 - Programming 2- CS112 — Lecture_09




Example 2: Number Class (1)

java.lang. Number

+byteValue(): byte
+shortValue(): short
+intValue(): 1int
+longVlaue(): long
+floatValue(): float
+doubleValue(): double

LN

Double I Float I Long

Integer | Short

Byte

Biglnteger

BigDecimal

11/15

2 A - Programming 2- CS112 — Lecture_09




Example 2: Number Class (2)

*Since the intValue(), longValue(), floatValue(), and doubleValue() methods
cannot be implemented in the Number class, they are defined as abstract
methods in the Number class

* The Number class is therefore an abstract class

* The byteValue() and shortValue() method are implemented from the

intValue() method as follows:

public byte byteValue() {
return (byte)intValue();

}
public short shortValue() {

return (short)intValue();

}

12/15 2 454 - Programming 2- CS112 — Lecture_09




Example 3: The Abstract Calendar Class and Its
GregorianCalendar Subclass (1)

java.util.Calendar
#Calendar() Constructs a default calendar.
+get(field: int): int Returns the value of the given calendar field.
+set(field: int, value: int): void Sets the given calendar to the specified value.
+set(year: int, month: int, Sets the calendar with the specified year, month, and date. The month
dayOfMonth: 1int): void parameter is 0-based; that is, 0 is for January.
+getActualMaximum(field: int): int Returns the maximum value that the specified calendar field could have.
+add(field: int, amount: 1int): void Adds or subtracts the specified amount of time to the given calendar field.
+getTime(): java.util.Date Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).
+setTime(date: java.util.Date): void Sets this calendar’s time with the given Date object.

é

java.util. GregorianCalendar

+GregorianCalendar() Constructs a GregorianCalendar for the current time.

+CGregorianCalendar(year: int, Constructs a GregorianCalendar for the specified year, month, and
month: int, dayOfMonth: int) date.

+GregorianCalendar(year: int, Constructs a GregorianCalendar for the specified year, month, date,
month: int, dayOfMonth: 1int, hour, minute, and second. The month parameter is 0-based, that
hour:int, minute: int, second: int) is, 0 is for January.

13/15 2 454 - Programming 2- CS112 — Lecture_09




Example 3: The Abstract Calendar Class and Its
GregorianCalendar Subclass (2)

* An instance of java.util.Date represents a specific instant in time with
millisecond precision

* java.util.Calendar is an abstract base class for extracting detailed information
such as year, month, date, hour, minute and second from a Date object

* Subclasses of Calendar can implement specific calendar systems such as
Gregorian calendar, Lunar Calendar and Jewish calendar

* Currently, java.util.GregorianCalendar for the Gregorian calendar is supported
in the Java API

14/15 2 454 - Programming 2- CS112 — Lecture_09




Example 3: The Abstract Calendar Class and Its
GregorianCalendar Subclass (3)
* The get Method in Calendar Class:

* The get(int field) method defined in the Calendar class is useful to extract the date and
time information from a Calendar object. The fields are defined as constants, as shown

in the following:
» See TestCalendar.java

Constant

Description

YEAR

MONTH

DATE

HOUR
HOUR_OF_DAY
MINUTE
SECOND
DAY_OF_WEEK
DAY_OF_MONTH
DAY_OF_YEAR
WEEK_OF_MONTH
WEEK_OF_YEAR
AM_PM

15/15 2 454 - Programming 2- CS112 — Lecture_09

The year of the calendar.

The month of the calendar, with O for January.

The day of the calendar.

The hour of the calendar (12-hour notation).

The hour of the calendar (24-hour notation).

The minute of the calendar.

The second of the calendar.

The day number within the week, with | for Sunday.

Same as DATE.

The day number in the year, with 1 for the first day of the year.
The week number within the month, with 1 for the first week.
The week number within the year, with | for the first week.
Indicator for AM or PM (0 for AM and | for PM).



