
CS112

Interfaces
Chapter 13

Lecture 10

Spring 2022 -1443 الفصل الدراسي الثاني
College of Computer Science and Engineering

2/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Introduction

•What is an interface?

•Why is an interface useful?

•How do you define an interface?

•How do you use an interface?

3/20 Programming 2- CS112 – Lecture_10 –برمجة 2

What is an interface? Why is an interface useful?

•An interface is a classlike construct that contains only constants and abstract
methods

• In many ways, an interface is similar to an abstract class, but the intent of an
interface is to specify common behavior for objects

• For example, you can specify that the objects are comparable, edible,
cloneable using appropriate interfaces

4/20 Programming 2- CS112 – Lecture_10 –برمجة 2

How do you define an interface?

•To distinguish an interface from a class, Java uses the following syntax to
define an interface:

•Example:

public interface InterfaceName {
 constant declarations;
 abstract method signatures;
}

public interface Edible {
 /** Describe how to eat */
 public abstract String howToEat();
}

5/20 Programming 2- CS112 – Lecture_10 –برمجة 2

How do you use an interface?

•An interface is treated like a special class in Java

•Each interface is compiled into a separate bytecode file, just like a regular class

• Like an abstract class, you cannot create an instance from an interface using
the new operator, but in most cases you can use an interface more or less the
same way you use an abstract class

• For example, you can use an interface as a data type for a variable, as the
result of casting, and so on

6/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Example 1: Edible Class

•You can now use the Edible interface to specify whether an object is edible

•This is accomplished by letting the class for the object implement this
interface using the implements keyword

• For example, the classes Chicken and Fruit implement the Edible interface (See
Edible.java and TestEdible.java).

7/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Omitting Modifiers in Interfaces

•All data fields are public final static and all methods are public abstract in an
interface. For this reason, these modifiers can be omitted, as shown below:

•A constant defined in an interface can be accessed using syntax
InterfaceName.CONSTANT_NAME (e.g., T1.K).

8/20 Programming 2- CS112 – Lecture_10 –برمجة 2

The Comparable Interface (1)
• Suppose you want to design a generic method to find the larger of two objects of the same

type, such as two students, two dates, two circles, two rectangles, or two squares

• In order to accomplish this, the two objects must be comparable, so the common behavior
for the objects must be comparable

Java provides the Comparable interface for this purpose. The interface is defined as follows:
// This interface is defined in

// java.lang package
package java.lang;

public interface Comparable<E> {
 public int compareTo(E o);
}

The compareTo method determines the
order of this object with the specified
object o and returns a negative integer,
zero, or a positive integer if this object
is less than, equal to, or greater than o

9/20 Programming 2- CS112 – Lecture_10 –برمجة 2

The Comparable Interface (2)

•The toString, equals, and hashCode Methods:
• Each wrapper class overrides the toString, equals, and hashCode methods defined in

the Object class
• Since all the numeric wrapper classes and the Character class implement the

Comparable interface, the compareTo method is implemented in these classes: See next
slide

10/20 Programming 2- CS112 – Lecture_10 –برمجة 2

String and Date Classes

Integer and BigInteger Classes

11/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Examples

System.out.println(new Integer(3).compareTo(new Integer(5)));

System.out.println("ABC".compareTo("ABE"));

java.util.Date date1 = new java.util.Date(2013, 1, 1);

java.util.Date date2 = new java.util.Date(2012, 1, 1);

System.out.println(date1.compareTo(date2));

12/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Defining Classes to Implement Comparable

13/20 Programming 2- CS112 – Lecture_10 –برمجة 2

The Cloneable Interfaces

•Marker Interface: An empty interface

•A marker interface does not contain constants or methods. It is used to denote
that a class possesses certain desirable properties

•A class that implements the Cloneable interface is marked cloneable, and its
objects can be cloned using the clone() method defined in the Object class

package java.lang;
public interface Cloneable {
}

14/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Examples
• Many classes (e.g., Date and Calendar) in the Java library implement Cloneable. Thus, the

instances of these classes can be cloned.

• For example, the following code:

Calendar calendar = new GregorianCalendar(2003, 2, 1);
Calendar calendarCopy = (Calendar)calendar.clone();
System.out.println("calendar == calendarCopy is " +
 (calendar == calendarCopy));
System.out.println("calendar.equals(calendarCopy) is " +
 calendar.equals(calendarCopy));

displays
calendar == calendarCopy is false
calendar.equals(calendarCopy) is true

15/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Implementing Cloneable Interface

•To define a custom class that implements the Cloneable interface, the class
must override the clone() method in the Object class

•The following code defines a class named House that implements Cloneable
and Comparable:
• See House.java

16/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Interfaces vs. Abstract Classes (1)

• In an interface, the data must be constants; an abstract class can have all types of data

• Each method in an interface has only a signature without implementation; an abstract
class can have concrete methods

17/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Interfaces vs. Abstract Classes (2)

•All classes share a single root, the Object class, but there is no single root for
interfaces

• Like a class, an interface also defines a type

•A variable of an interface type can reference any instance of the class that
implements the interface

• If a class extends an interface, this interface plays the same role as a
superclass

•You can use an interface as a data type and cast a variable of an interface type
to its subclass, and vice versa.

18/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Interfaces vs. Abstract Classes (3)

• Suppose that c is an instance of Class2. c is also an instance of Object, Class1,
Interface1, Interface1_1, Interface1_2, Interface2_1, and Interface2_2.

19/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Caution: conflict interfaces

• In rare occasions, a class may implement two interfaces with conflict
information (e.g., two same constants with different values or two methods
with same signature but different return type). This type of errors will be
detected by the compiler.

20/20 Programming 2- CS112 – Lecture_10 –برمجة 2

Whether to use an interface or a class?

• Abstract classes and interfaces can both be used to model common features. How do
you decide whether to use an interface or a class?

• In general, a strong is-a relationship that clearly describes a parent-child relationship
should be modeled using classes
• For example, a staff member is a person

• A weak is-a relationship, also known as an is-kind-of relationship, indicates that an
object possesses a certain property. A weak is-a relationship can be modeled using
interfaces
• For example, all strings are comparable, so the String class implements the Comparable

interface
• You can also use interfaces to circumvent single inheritance restriction if multiple inheritance is

desired
• In the case of multiple inheritance, you have to design one as a superclass, and others as

interface

